Problems 251whereDistheflexuralrigidity,νisPoisson’sratio,andAisaconstant. CalculatethevalueofAandhencethe
centraldeflectionoftheplate.
Ans. A=a^4 ( 5 − 3 ν)/4,Cen.def.=qa^4 ( 5 − 3 ν)/ 384 D( 1 −ν)P.7.6 Thedeflectionofasquareplateofsidea,whichsupportsalateralloadrepresentedbythefunctionq(x,y)
isgivenby
w(x,y)=w 0 cos
πx
a
cos
3 πy
a
,wherexandyarereferredtoaxeswhoseorigincoincideswiththecenteroftheplateandw 0 isthedeflectionatthe
center.
IftheflexuralrigidityoftheplateisDandPoisson’sratioisν,determinetheloadingfunctionq,thesupport
conditionsoftheplate,thereactionsattheplatecorners,andthebendingmomentsatthecenteroftheplate.
Ans. q(x,y)=w 0 D 100
π^4
a^4cos
πx
a
cos
3 πy
a
Theplateissimplysupportedonalledges.
Reactions:− 6 w 0 D(π
a) 2
( 1 −ν)Mx=w 0 D(π
a) 2
( 1 + 9 ν),My=w 0 D(π
a) 2
( 9 +ν).P.7.7 Asimplysupportedsquareplatea×acarriesadistributedloadaccordingtotheformula
q(x,y)=q 0x
a
,whereq 0 isitsintensityattheedgex=a.Determinethedeflectedshapeoftheplate.
Ans. w=
8 q 0 a^4
π^6 D∑∞m=1,2,3∑∞n=1,3,5(− 1 )m+^1
mn(m^2 +n^2 )^2sin
mπx
asin
nπy
aP.7.8 Anellipticplateofmajorandminoraxes2aand2bandofsmallthicknesstisclampedalongitsboundary
andissubjectedtoauniformpressuredifferencepbetweenthetwofaces.Showthattheusualdifferentialequation
fornormaldisplacementsofathinflatplatesubjecttolateralloadingissatisfiedbythesolution
w=w 0(
1 −
x^2
a^2−
y^2
b^2) 2
,wherew 0 isthedeflectionatthecenterwhichistakenastheorigin.
Determinew 0 in terms ofpand the relevant material properties of the plate and hence expressions for the
greateststressesduetobendingatthecenterandattheendsoftheminoraxis.
Ans. w 0 =3 p( 1 −ν^2 )2 Et^3(
3
a^4
+
2
a^2 b^2
+
3
b^4)Center, σx,max=
± 3 pa^2 b^2 (b^2 +νa^2 )
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 ), σy,max=
± 3 pa^2 b^2 (a^2 +νb^2 )
t^2 ( 3 b^4 + 2 a^2 b^2 + 3 a^4 )