18 CHAPTER 1 Basic Elasticity
Hence,
σn=σx+σy
2+
(
σx−σy
2)
cos2θ+CP 1 tanβsin2θwhich,onrearranging,becomes
σn=σxcos^2 θ+σysin^2 θ+τxysin2θasinEq.(1.8).Similarly,itmaybeshownthat
Q′N=τxycos2θ−(
σx−σy
2)
sin2θ=−τasinEq.(1.9).NotethattheconstructionofFig.1.12(b)correspondstothestresssystemofFig.1.12(a)
so that any sign reversal must be allowed for. Also, the Oσand Oτaxes must be constructed to the
samescale,ortheequationofthecircleisnotrepresented.
The maximum and minimum values of the direct stress—that is, the major and minor principal
stressesσIandσII—occurwhenNandQ′coincidewithBandA,respectively.Thus,
σ 1 =OC+radiusofcircle=(σx+σy)
2+
√
CP^21 +P 1 Q^21
or
σI=(σx+σy)
2+
1
2
√
(σx−σy)^2 + 4 τxy^2andinthesamefashion
σII=(σx+σy)
2−
1
2
√
(σx−σy)^2 + 4 τxy^2Theprincipalplanesarethengivenby2θ=β(σI)and2θ=β+π(σII).
AlsothemaximumandminimumvaluesofshearstressoccurwhenQ′coincideswithDandEat
theupperandlowerextremitiesofthecircle.
Atthesepoints,Q′Nisequaltotheradiusofthecirclewhichisgivenby
CQ 1 =
√
(σx−σy)^2
4+τxy^2Henceτmax,min=±^12
√
(σx−σy)^2 + 4 τxy^2 asbefore.Theplanesofmaximumandminimumshearstressesaregivenby2θ=β+π/2and2θ=β+ 3 π/2,thesebeinginclinedat45◦totheprincipalplanes.
Example 1.3
Directstressesof160N/mm^2 (tension)and120N/mm^2 (compression)areappliedataparticularpointin
anelasticmaterialontwomutuallyperpendicularplanes.Theprincipalstressinthematerialislimited