8.6 Flexural–Torsional Buckling of Thin-Walled Columns 275
DifferentiatingEq.(8.53)twicewithrespecttozgives
EIxx
d^4 v
dz^4
=−PCR
d^2 v
dz^2
(8.54)
ComparingEqs.(8.52)and(8.54),weseethatthebehaviorofthecolumnmaybeobtainedbyconsider-
ingitasasimplysupportedbeamcarryingauniformlydistributedloadofintensitywygivenby
wy=−PCR
d^2 v
dz^2
(8.55)
Similarly,forbucklingabouttheCyaxis
wx=−PCR
d^2 u
dz^2
(8.56)
Considernowathin-walledcolumnhavingthecrosssectionshowninFig.8.16andsupposethat
thecentroidalaxesCxyareprincipalaxes(seeChapter15);S(xS,yS)istheshearcenterofthecolumn
(seeChapter16),anditscross-sectionalareaisA.Duetotheflexural–torsionalbucklingproduced,say,
byacompressiveaxialloadP,thecrosssectionwillsuffertranslationsuandvparalleltoCxandCy,
respectively,andarotationθ,positiveanticlockwise,abouttheshearcenterS.Thus,duetotranslation,
CandSmovetoC′andS′,andthen,duetorotationaboutS′,C′movestoC′′.Thetotalmovementof
C,uC,inthexdirectionisgivenby
uc=u+C′D=u+C′C′′sinα(S′Cˆ′C′′ 90 ◦)
But
C′C′′=C′S′θ=CSθ
Hence
uC=u+θCSsinα=u+ySθ (8.57)
Also,thetotalmovementofCintheydirectionis
vC=v−DC′′=v−C′C′′cosα=v−θCScosα
sothat
vC=v−xsθ (8.58)
Sinceatthisparticularcrosssectionofthecolumnthecentroidalaxishasbeendisplaced,theaxialload
Pproducesbendingmomentsaboutthedisplacedxandyaxesgiven,respectively,by
Mx=PvC=P(v−xSθ) (8.59)
and
My=PuC=P(u+ySθ) (8.60)