20 CHAPTER 1 Basic Elasticity
Fig.1.14
Solution of Example 1.3 using Mohr’s circle of stress.
ThenumericalsolutionsofEq.(iii)correspondingtothegivenvaluesofσx,σy,andτxyaretheprincipal
stressesatthepoint,namely
σ 1 =200N/mm^2 (given)σII=−160N/mm^2
Having obtained the principal stresses, we now use Eq. (1.15) to find the maximum shear stress,
thus,
τmax=
200 + 160
2
=180N/mm^2
ThesolutionisrapidlyverifiedfromMohr’scircleofstress(Fig.1.14).FromthearbitraryoriginO,
OP 1 andOP 2 aredrawntorepresentσx=160N/mm^2 andσy=−120N/mm^2 .ThemidpointCofP 1 P 2
isthenlocated.OB=σ 1 =200N/mm^2 ismarkedout,andtheradiusofthecircleisthenCB.OAisthe
requiredprincipalstress.PerpendicularsP 1 Q 1 andP 2 Q 2 tothecircumferenceofthecircleareequalto
±τxy(toscale),andtheradiusofthecircleisthemaximumshearstress.
1.9 Strain..................................................................................................
Theexternalandinternalforcesdescribedintheprevioussectionscauselinearandangulardisplace-
mentsinadeformablebody.Thesedisplacementsaregenerallydefinedintermsofstrain.Longitudinal