Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

302 CHAPTER 9 Thin Plates


9.6 FailureStressinPlatesandStiffenedPanels......................................................


Thepreviousdiscussiononplatesandstiffenedpanelsinvestigatedthepredictionofbucklingstresses.
However,aswehaveseen,platesretainsomeoftheircapacitytocarryloadeventhoughaportionof
theplatehasbuckled.Infact,theultimateloadisnotreacheduntilthestressinthemajorityoftheplate
exceedstheelasticlimit.Thetheoreticalcalculationoftheultimatestressisdifficult,sincenonlinearity
resultsfrombothlargedeflectionsandtheinelasticstress–strainrelationship.
Gerard[Ref.1]proposesasemiempiricalsolutionforflatplatessupportedonallfouredges.After
elasticbucklingoccurs,theoryandexperimentindicatethattheaveragecompressivestress,σ ̄a,inthe
plateandtheunloadededgestress,σe,arerelatedbythefollowingexpression:


σ ̄a
σCR

=α 1

(

σe
σCR

)n
(9.8)

where


σCR=

kπ^2 E
12 ( 1 −ν^2 )

(

t
b

) 2

andα 1 is some unknown constant. Theoretical work by Stowell [Ref. 7] and Mayers and Budiansky
[Ref.8]showsthatfailureoccurswhenthestressalongtheunloadededgeisapproximatelyequalto
the compressive yield strength,σcy, of the material. Hence, substitutingσcyforσein Eq. (9.8) and
rearranginggive


σ ̄f
σcy

=α 1

(

σCR
σcy

) 1 −n
(9.9)

wheretheaveragecompressivestressintheplatehasbecometheaveragestressatfailureσ ̄f.Substituting
forσCRinEq.(9.9)andputting


α 1 π^2 (^1 −n)
[12( 1 −ν^2 )]^1 −n


yield


σ ̄f
σcy

=αk^1 −n

[

t
b

(

E

σcy

)^12 ]^2 (^1 −n)
(9.10)

or,inasimplifiedform,


σ ̄f
σcy


[

t
b

(

E

σcy

)^12 ]m
(9.11)

whereβ=αkm/^2 .TheconstantsβandmaredeterminedbythebestfitofEq.(9.11)totestdata.
Experimentsonsimplysupportedflatplatesandsquaretubesofvariousaluminumandmagnesium
alloys and steel show thatβ=1.42 andm=0.85fit the results within±10 percent up to the yield
strength.Correspondingvaluesforlong,clamped,flatplatesareβ=1.80,m=0.85.

Free download pdf