306 CHAPTER 9 Thin Plates
whichgives
σz=σtcos^2 α
or,substitutingforσtfromEq.(9.15),
σz=
τ
tanα
(9.17)
or,forthisparticularbeam,fromEq.(9.14)
σz=
W
tdtanα
(9.18)
Sinceτandσtare constant through the depth of the beam, it follows thatσzis constant through the
depthofthebeam.
Thedirectloadsintheflangesarefoundbyconsideringalengthzofthebeam,asshowninFig.9.9.
Ontheplanemm,therearedirectandshearstressesσzandτactingintheweb,togetherwithdirectloads
FTandFBinthetopandbottomflanges,respectively.FTandFBareproducedbyacombinationof
thebendingmomentWzatthesectionplusthecompressiveaction(σz)ofthediagonaltension.Taking
momentsaboutthebottomflange,
Wz=FTd−
σztd^2
2
Hence,substitutingforσzfromEq.(9.18)andrearranging,
FT=
Wz
d
+
W
2tanα
(9.19)
Fig.9.9
Determination of flange forces.