Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

312 CHAPTER 9 Thin Plates


Theratioτ/τCRisknownastheloadingratioorbucklingstressratio.ThebucklingstressτCRmaybe
calculatedfromtheformula


τCR,elastic=kssE

(

t
b

) 2 [

Rd+

1

2

(Rb−Rd)

(

b
d

) 3 ]

(9.33)

wherekssisthecoefficientforaplatewithsimplysupportededges,andRdandRbareempiricalrestraint
coefficientsfortheverticalandhorizontaledgesofthewebpanel,respectively.Graphsgivingkss,Rd,
andRbarereproducedinthestudyofKuhn[Ref.13].
The stress equations (9.27) and (9.28) are modified in the light of these assumptions and may be
rewrittenintermsoftheappliedshearstressτas


σF=

kτcotα
( 2 AF/td)+0.5( 1 −k)

(9.34)

σS=

kτtanα
(AS/tb)+0.5( 1 −k)

(9.35)

Further,thewebstressσtgivenbyEq.(9.15)becomestwodirectstresses:σ 1 alongthedirectionofα
givenby


σ 1 =

2 kτ
sin2α

+τ( 1 −k)sin2α (9.36)

andσ 2 perpendiculartothisdirectiongivenby


σ 2 =−τ( 1 −k)sin2α (9.37)

ThesecondarybendingmomentofEq.(9.25)ismultipliedbythefactork,whiletheeffectivelengths
forthecalculationofstiffenerbucklingloadsbecome(seeEqs.(9.24))


or
le=ds/


1 +k^2 ( 3 − 2 b/ds) forb<1.5d
le=ds forb>1.5d

wheredsistheactualstiffenerdepth,asopposedtotheeffectivedepthdoftheweb,takenbetweenthe
web/flangeconnections,asshowninFig.9.13.WeobservethatEqs.(9.34)through(9.37)areapplicable
toeitherincompleteorcompletediagonaltensionfieldbeams,since,forthelattercase,k=1giving
theresultsofEqs.(9.27),(9.28),and(9.15).
Insomecases,beamstaperalongtheirlengths,inwhichcasetheflangeloadsarenolongerhorizontal
buthaveverticalcomponentswhichreducetheshearloadcarriedbytheweb.Thus,inFig.9.14,where
disthedepthofthebeamatthesectionconsidered,wehave,resolvingforcesvertically,


W−(FT+FB)sinβ−σt(dcosα)sinα= 0 (9.38)

Forhorizontalequilibrium,


(FT−FB)cosβ−σttdcos^2 α= 0 (9.39)
Free download pdf