316 CHAPTER 9 Thin Plates
Further,thedirectstressσηontheplaneFD(Fig.9.16(c))whichisperpendiculartotheplaneofthe
buckleisfoundfromtheequilibriumoftheelementFED.Then,
σηFD+σmbEDsinθ+τmEFsinθ+τmDEcosθ= 0
DividingbyFDandrearranginggive
ση=−σmbsin^2 θ−τmsin2θ (9.49)
Notethattheshearstressonthisplaneformsacomplementaryshearstresssystemwithτηξ.
Thefailureconditionisreachedbyaddingσt(max)toσξandusingthevonMisestheoryofelastic
failure(see[Ref.15]),thatis,
σy^2 =σ 12 +σ 22 −σ 1 σ 2 + 3 τ^2 (9.50)
whereσyis the yield stress of the material,σ 1 andσ 2 are the direct stresses acting on two mutually
perpendicularplanes,andτistheshearstressactingonthesametwoplanes.Hence,whentheyield
stressinthewebisσyw,failureoccurswhen
σyw^2 =(σξ+σt(max))^2 +ση^2 −ση(σξ+σt(max))+ 3 τηξ^2 (9.51)
Eqs.(9.47),(9.48),(9.49),and(9.51)maybesolvedforσt(max),whichisthengivenby
σt(max)=−
1
2
A+
1
2
[A^2 − 4 (σmb^2 + 3 τm^2 −σyw^2 )]
1
(^2) (9.52)
where
A= 3 τmsin2θ+σmbsin^2 θ− 2 σmbcos^2 θ (9.53)
Theseequationshavebeenderivedforapointontheedgeofthepanelbutareapplicabletoanypoint
withinitsboundary.Therefore,theresultantforceFwcorrespondingtothetensionfieldinthewebmay
becalculatedanditslineofactiondetermined.
Iftheaveragestressesinthecompressionandtensionflangesareσcfandσtfandtheyieldstressof
theflangesisσyf,thereducedplasticmomentsintheflangesare(see[Ref.15])
Mpc′ =Mpc
[
1 −
(
σcf
σyf
) 2 ]
(compressionflange) (9.54)
Mpt′ =Mpt
[
1 −
(
σtf
σyf
)]
(tensionflange) (9.55)
Thepositionofeachplastichingemaybefoundbyconsideringtheequilibriumofalengthofflange
andusingtheprincipleofvirtualwork.InFig.9.17,thelengthWXoftheupperflangeofthebeamis
givenavirtualdisplacementφ.TheworkdonebytheshearforceatXisequaltotheenergyabsorbed
bytheplastichingesatXandWandtheworkdoneagainstthetensionfieldstressσt(max).Suppose
thattheaveragevalueofthetensionfieldstressisσtc—thatis,thestressatthemidpointofWX.