Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

24 CHAPTER 1 Basic Elasticity


1.10 CompatibilityEquations............................................................................


InSection1.9,weexpressedthesixcomponentsofstrainatapointinadeformablebodyintermsofthe
threecomponentsofdisplacementatthatpoint,u,v,andw.Wehavesupposedthatthebodyremains
continuousduringthedeformationsothatnovoidsareformed.Itfollowsthateachcomponent,u,v,
andw,mustbeacontinuous,single-valuedfunctionor,inquantitativeterms,


u=f 1 (x,y,z) v=f 2 (x,y,z) w=f 3 (x,y,z)

Ifvoidswereformed,thendisplacementsinregionsofthebodyseparatedbythevoidswouldbe
expressed as different functions ofx,y,andz. The existence, therefore, of just three single-valued
functionsfordisplacementisanexpressionofthecontinuityorcompatibilityofdisplacementwhich
wehavepresupposed.
Sincethesixstrainsaredefinedintermsofthreedisplacementfunctions,thentheymustbearsome
relationshiptoeachotherandcannothavearbitraryvalues.Theserelationshipsarefoundasfollows.
DifferentiatingγxyfromEq.(1.20)withrespecttoxandygives


∂^2 γxy
∂x∂y

=

∂^2

∂x∂y

∂v
∂x

+

∂^2

∂x∂y

∂u
∂y

orsincethefunctionsofuandvarecontinuous,


∂^2 γxy
∂x∂y

=

∂^2

∂x^2

∂v
∂y

+

∂^2

∂y^2

∂u
∂x

whichmaybewritten,usingEq.(1.18)


∂^2 γxy
∂x∂y

=

∂^2 εy
∂x^2

+

∂^2 εx
∂y^2

(1.21)

Inasimilarmanner,


∂^2 γyz
∂y∂z

=

∂^2 εy
∂z^2

+

∂^2 εz
∂y^2

(1.22)

∂^2 γxz
∂x∂z

=

∂^2 εz
∂x^2

+

∂^2 εx
∂z^2

(1.23)

Ifwenowdifferentiateγxywithrespecttoxandzandaddtheresulttoγzx,differentiatedwithrespect
toyandx,weobtain


∂^2 γxy
∂x∂z

+

∂^2 γxz
∂y∂x

=

∂^2

∂x∂z

(

∂u
∂y

+

∂v
∂x

)

+

∂^2

∂y∂x

(

∂w
∂x

+

∂u
∂z

)

or



∂x

(

∂γxy
∂z

+

∂γxz
∂y

)

=

∂^2

∂z∂y

∂u
∂x

+

∂^2

∂x^2

(

∂v
∂z

+

∂w
∂y

)

+

∂^2

∂y∂z

∂u
∂x
Free download pdf