24 CHAPTER 1 Basic Elasticity
1.10 CompatibilityEquations............................................................................
InSection1.9,weexpressedthesixcomponentsofstrainatapointinadeformablebodyintermsofthe
threecomponentsofdisplacementatthatpoint,u,v,andw.Wehavesupposedthatthebodyremains
continuousduringthedeformationsothatnovoidsareformed.Itfollowsthateachcomponent,u,v,
andw,mustbeacontinuous,single-valuedfunctionor,inquantitativeterms,
u=f 1 (x,y,z) v=f 2 (x,y,z) w=f 3 (x,y,z)
Ifvoidswereformed,thendisplacementsinregionsofthebodyseparatedbythevoidswouldbe
expressed as different functions ofx,y,andz. The existence, therefore, of just three single-valued
functionsfordisplacementisanexpressionofthecontinuityorcompatibilityofdisplacementwhich
wehavepresupposed.
Sincethesixstrainsaredefinedintermsofthreedisplacementfunctions,thentheymustbearsome
relationshiptoeachotherandcannothavearbitraryvalues.Theserelationshipsarefoundasfollows.
DifferentiatingγxyfromEq.(1.20)withrespecttoxandygives
∂^2 γxy
∂x∂y
=
∂^2
∂x∂y
∂v
∂x
+
∂^2
∂x∂y
∂u
∂y
orsincethefunctionsofuandvarecontinuous,
∂^2 γxy
∂x∂y
=
∂^2
∂x^2
∂v
∂y
+
∂^2
∂y^2
∂u
∂x
whichmaybewritten,usingEq.(1.18)
∂^2 γxy
∂x∂y
=
∂^2 εy
∂x^2
+
∂^2 εx
∂y^2
(1.21)
Inasimilarmanner,
∂^2 γyz
∂y∂z
=
∂^2 εy
∂z^2
+
∂^2 εz
∂y^2
(1.22)
∂^2 γxz
∂x∂z
=
∂^2 εz
∂x^2
+
∂^2 εx
∂z^2
(1.23)
Ifwenowdifferentiateγxywithrespecttoxandzandaddtheresulttoγzx,differentiatedwithrespect
toyandx,weobtain
∂^2 γxy
∂x∂z
+
∂^2 γxz
∂y∂x
=
∂^2
∂x∂z
(
∂u
∂y
+
∂v
∂x
)
+
∂^2
∂y∂x
(
∂w
∂x
+
∂u
∂z
)
or
∂
∂x
(
∂γxy
∂z
+
∂γxz
∂y
)
=
∂^2
∂z∂y
∂u
∂x
+
∂^2
∂x^2
(
∂v
∂z
+
∂w
∂y
)
+
∂^2
∂y∂z
∂u
∂x