Problems 321Fig. P.9.1 Fig. P.9.2method,findanapproximateexpressionforthemagnitudeofthestressσwhichcausestheplatetobuckle,assuming
thatthedeflectedshapeoftheplateisgivenbyw=a 11 sin
mπx
lsin^2
πy
b
Fortheparticularcasel= 2 b,findthenumberofhalf-wavesmcorrespondingtothelowestcriticalstress,expressing
theresulttothenearestinteger.Determinealsothelowestcriticalstress.
Ans. m=3,σCR=6E/( 1 −v^2 )^2
P.9.3 Apanel,comprisingflatsheetanduniformlyspacedZ-sectionstringers,apartofwhosecrosssectionis
showninFig.P.9.3,istobeinvestigatedforstrengthunderuniformcompressiveloadsinastructureinwhichitis
tobestabilizedbyframesadistancelapart,lbeingappreciablygreaterthanthespacingb.
(a) Statemodesoffailureyouwouldconsiderandhowyouwoulddetermineappropriatelimitingstresses.
(b) Describeasuitabletesttoverifyyourcalculations,givingparticularsofthespecimen,themannerofsupport,
andthemeasurementsyouwouldtake.Thelattershouldenableyoutoverifytheassumptionsmade,aswell
astoobtaintheloadsupported.
Fig. P.9.3P.9.4 PartofacompressionpanelofinternalconstructionisshowninFig.P.9.4.Theequivalentpin-centerlength
ofthepanelis500mm.ThematerialhasaYoung’smodulusof70000N/mm^2 ,anditselasticitymaybetakenas
fallingcatastrophicallywhenacompressivestressof300N/mm^2 isreached.Takingcoefficientsof3.62forbuckling
ofaplatewithsimplysupportedsidesandof0.385withonesidesimplysupportedandonefree,determine(a)the
loadpermmwidthofpanelwheninitialbucklingmaybeexpectedand(b)theloadpermmforultimatefailure.
Treatthematerialasthinforcalculatingsectionconstants,andassumethatafterinitialbuckling,thestressinthe
plateincreasesparabolicallyfromitscriticalvalueinthecenterofsections.