1.13 Principal Strains 27
ThestrainεninthedirectionnormaltotheplaneEDisfoundbyreplacingtheangleθinEq.(1.30)by
θ−π/2.Hence,
εn=εxcos^2 θ+εysin^2 θ+
γxy
2
sin2θ (1.31)
TurningourattentionnowtothetriangleC′F′E′,wehave
(C′E′)^2 =(C′F′)^2 +(F′E′)^2 − 2 (C′F′)(F′E′)cos(π/ 2 −γ) (1.32)
inwhich
C′E′=CE( 1 +εy)
C′F′=CF( 1 +εn)
F′E′=FE( 1 +εn+π/ 2 )
SubstitutingforC′E′,C′F′,andF′E′inEq.(1.32)andwritingcos(π/ 2 −γ)=sinγ,wefind
(CE)^2 ( 1 +εy)^2 =(CF)^2 ( 1 +εn)^2 +(FE)^2 ( 1 +εn+π/ 2 )^2
− 2 (CF)(FE)( 1 +εn)( 1 +εn+π/ 2 )sinγ
(1.33)
Allthestrainsareassumedtobesmallsothattheirsquaresandhigherpowersmaybeignored.Further,
sinγ≈γandEq.(1.33)becomes
(CE)^2 ( 1 + 2 εy)=(CF)^2 ( 1 + 2 εn)+(FE)^2 ( 1 + 2 εn+π/ 2 )− 2 (CF)(FE)γ
FromFig.1.16(a),(CE)^2 =(CF)^2 +(FE)^2 andtheprecedingequationsimplifiesto
2 (CE)^2 εy= 2 (CF)^2 εn+ 2 (FE)^2 εn+π/ 2 − 2 (CF)(FE)γ
Dividingby2(CE)^2 andtransposing,
γ=
εnsin^2 θ+εn+π/ 2 cos^2 θ−εy
sinθcosθ
Substitutionofεn+π/ 2 andεnfromEqs.(1.30)and(1.31)yields
γ
2
=
(εx−εy)
2
sin2θ−
γxy
2
cos2θ (1.34)
1.13 PrincipalStrains......................................................................................
IfwecompareEqs.(1.31)and(1.34)withEqs.(1.8)and(1.9),weobservethattheymaybeobtainedfrom
Eqs.(1.8)and(1.9)byreplacingσnbyεn,σxbyεx,σybyεy,τxybyγxy/2,andτbyγ/2.Therefore,for
eachdeductionmadefromEqs.(1.8)and(1.9)concerningσnandτ,thereisacorrespondingdeduction
fromEqs.(1.31)and(1.34)regardingεnandγ/2.