13.1 Aircraft Inertia Loads 381
elementδminadirectionperpendiculartorandintheoppositesensetotheangularacceleration.This
inertiaforcehascomponentsαrδmcosθandαrδmsinθ,i.e.αxδmandαyδm,intheyandxdirections,
respectively.Thus,theresultantinertiaforces,FxandFy,aregivenby
Fx=
∫
αydm=α
∫
ydm
and
Fy=−
∫
αxdm=−α
∫
xdm
forαinthedirectionshown.Then,asbefore
Fx=α ̄ym (13.3)
and
Fy=α ̄xm (13.4)
Also,iftheCGliesonthexaxis, ̄y=0andFx=0. Similarly, if the CG lies on theyaxis, ̄x=0and
Fy=0.
The torque about the axis of rotation produced by the inertia force corresponding to the angular
accelerationontheelementδmisgivenby
δTO=αr^2 δm
Thus,forthecompletemass
TO=
∫
αr^2 dm=α
∫
r^2 dm
Theintegralterminthisexpressionisthemomentofinertia,IO,ofthemassabouttheaxisofrotation.
Thus,
TO=αIO (13.5)
Equation (13.5) may be rewritten in terms ofICG, the moment of inertia of the mass about an axis
perpendiculartotheplaneofthemassthroughtheCG.Hence,usingtheparallelaxestheorem
IO=m( ̄r)^2 +ICG
wherer ̄isthedistancebetweenOandtheCG.Then
IO=m[(x ̄)^2 +( ̄y)^2 ]+ICG
and
TO=m[(x ̄)^2 +( ̄y)^2 ]α+ICGα (13.6)