1.15 Stress–Strain Relationships 31
andtheshearstrainsγxy,γxz,andγyzareexpressedintermsoftheirassociatedshearstressesasfollows:
γxy=
τxy
G
γxz=
τxz
G
γyz=
τyz
G
(1.51)
Equations(1.51),togetherwithEqs.(1.42),providetheadditionalsixequationsrequiredtodetermine
the15unknownsinageneralthree-dimensionalprobleminelasticity.Theyare,however,limitedinuse
toalinearlyelasticisotropicbody.
Forthecaseofplanestress,theysimplifyto
εx=
1
E
(σx−νσy)
εy=
1
E
(σy−νσx)
εz=
−ν
E
(σx−σy)
γxy=
τxy
G
⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭
(1.52)
ItmaybeseenfromthethirdofEqs.(1.52)thattheconditionsofplanestressandplanestraindonot
necessarilydescribeidenticalsituations.
Changesinthelineardimensionsofastrainedbodymayleadtoachangeinvolume.Supposethat
asmallelementofabodyhasdimensionsδx,δy,andδz.Whensubjectedtoathree-dimensionalstress
system,theelementsustainsavolumetricstraine(changeinvolume/unitvolume)equalto
e=
( 1 +εx)δx( 1 +εy)δy( 1 +εz)δz−δxδyδz
δxδyδz
Neglectingproductsofsmallquantitiesintheexpansionoftheright-handsideoftheprecedingequation
yields
e=εx+εy+εz (1.53)
Substitutingforεx,εy,andεzfromEqs.(1.42),wefindforalinearlyelastic,isotropicbody
e=
1
E
[σx+σy+σz− 2 ν(σx+σy+σz)]
or
e=
( 1 − 2 ν)
E
(σx+σy+σz)
Inthecaseofauniformhydrostaticpressure,σx=σy=σz=−pand
e=−
3 ( 1 − 2 ν)
E
p (1.54)
TheconstantE/ 3 ( 1 − 2 ν)isknownasthebulkmodulusormodulusofvolumeexpansionandisoften
giventhesymbolK.