1.15 Stress–Strain Relationships 31andtheshearstrainsγxy,γxz,andγyzareexpressedintermsoftheirassociatedshearstressesasfollows:
γxy=τxy
Gγxz=τxz
Gγyz=τyz
G(1.51)
Equations(1.51),togetherwithEqs.(1.42),providetheadditionalsixequationsrequiredtodetermine
the15unknownsinageneralthree-dimensionalprobleminelasticity.Theyare,however,limitedinuse
toalinearlyelasticisotropicbody.
Forthecaseofplanestress,theysimplifyto
εx=1
E
(σx−νσy)εy=1
E
(σy−νσx)εz=−ν
E(σx−σy)γxy=τxy
G⎫
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎬
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎪⎪
⎭
(1.52)
ItmaybeseenfromthethirdofEqs.(1.52)thattheconditionsofplanestressandplanestraindonot
necessarilydescribeidenticalsituations.
Changesinthelineardimensionsofastrainedbodymayleadtoachangeinvolume.Supposethat
asmallelementofabodyhasdimensionsδx,δy,andδz.Whensubjectedtoathree-dimensionalstress
system,theelementsustainsavolumetricstraine(changeinvolume/unitvolume)equalto
e=( 1 +εx)δx( 1 +εy)δy( 1 +εz)δz−δxδyδz
δxδyδzNeglectingproductsofsmallquantitiesintheexpansionoftheright-handsideoftheprecedingequation
yields
e=εx+εy+εz (1.53)Substitutingforεx,εy,andεzfromEqs.(1.42),wefindforalinearlyelastic,isotropicbodye=1
E
[σx+σy+σz− 2 ν(σx+σy+σz)]or
e=( 1 − 2 ν)
E(σx+σy+σz)Inthecaseofauniformhydrostaticpressure,σx=σy=σz=−pand
e=−3 ( 1 − 2 ν)
Ep (1.54)TheconstantE/ 3 ( 1 − 2 ν)isknownasthebulkmodulusormodulusofvolumeexpansionandisoften
giventhesymbolK.