Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

392 CHAPTER 13 Airframe Loads


or,sinceL=nW(seeSection13.2)


n=

V^2

gR

+cosθ (13.15)

Atthelowestpointofthepull-out,θ=0,and


n=

V^2

gR

+ 1 (13.16)

WeseefromeitherEq.(13.15)orEq.(13.16)thatthesmallertheradiusoftheflightpath,thatisthe
moreseverethepull-out,thegreaterthevalueofn.Itisquitepossible,therefore,foraseverepull-out
tooverstresstheaircraftbysubjectingittoloadswhichlieoutsidetheflightenvelopeandwhichmay
evenexceedtheprooforultimateloads.Inpractice,thecontrolsurfacemovementmaybelimitedby
stopsincorporatedinthecontrolcircuit.Thesestopsusuallyoperateonlyaboveacertainspeed,giving
the aircraft adequate maneuverability at lower speeds. For hydraulically operated controls, “artificial
feel”isbuiltintothesystemwherebythestickforceincreasesprogressivelyasthespeedincreases—a
necessaryprecautioninthistypeofsystemsincethepilotismerelyopeningandclosingvalvesinthe
controlcircuitandthereforereceivesnodirectphysicalindicationofcontrolsurfaceforces.
Alternatively, at low speeds, a severe pull-out or pull-up may stall the aircraft. Again safety pre-
cautions are usually incorporated in the form of stall warning devices, since, for modern high-speed
aircraft,astallcanbedisastrous,particularlyatlowaltitudes.


13.3.2 Correctly Banked Turn


Inthismaneuver,theaircraftfliesinahorizontalturnwithnosideslipatconstantspeed.Iftheradiusof
theturnisRandtheangleofbankφ,thentheforcesactingontheaircraftarethoseshowninFig.13.10.
The horizontal component of the lift vector in this case provides the force necessary to produce the
centripetalaccelerationoftheaircrafttowardthecenteroftheturn.Then


Lsinφ=

WV^2

gR

(13.17)

Fig.13.10


Correctly banked turn.

Free download pdf