13.4 Gust Loads 397
whereSTisthetailplaneareaand CL,Ttheincrementoftailplaneliftcoefficientgivenby
CL,T=
∂CL,T
∂α
uE
VE
(13.30)
in which∂CL,T/∂αis the rate of change of tailplane lift coefficient with wing incidence. From
aerodynamictheory,
∂CL,T
∂α
=
∂CL,T
∂αT
(
1 −
∂ε
∂α
)
where∂CL,T/∂αTistherateofchangeofCL,Twithtailplaneincidenceand∂ε/∂αistherateofchange
ofdownwashanglewithwingincidence.Substitutingfor CL,TfromEq.(13.30)intoEq.(13.29),we
have
P=
1
2
ρ 0 VEST
∂CL,T
∂α
uE (13.31)
Forpositiveincrementsofwingliftandtailplaneload
nW= L+ P
or,fromEqs.(13.27)and(13.31)
n=
1
2 ρ^0 VE(∂CL/∂α)uE
w
(
1 +
ST
S
∂CL,T/∂α
∂CL/∂α
)
(13.32)
13.4.2 The “Graded” Gust
The“graded”gustofFig.13.11(b)maybeconvertedtoanequivalent“sharp-edged”gustbymultiplying
themaximumvelocityinthegustbyagustalleviationfactor,F.Equation(13.27)thenbecomes
n= 1 +
1
2 ρ^0 VE(∂CL/∂α)FuE
w
(13.33)
SimilarmodificationsarecarriedoutonEqs.(13.25),(13.26),(13.28),and(13.32).Thegustalleviation
factorallowsforsomeofthedynamicpropertiesoftheaircraft,includingunsteadylift,andhasbeen
calculatedtakingintoaccounttheheavingmotion(i.e.,theupanddownmotionwithzerorateofpitch)
oftheaircraftonly[Ref.5].
Horizontalgustscauselateralloadsontheverticaltailorfin.Theirmagnitudesmaybecalculated
inanidenticalmannertothoseabove,exceptthatareasandvaluesofliftcurveslopearereferredto
the vertical tail. Also, the gust alleviation factor in the “graded” gust case becomesF 1 and includes
allowances for the aerodynamic yawing moment produced by the gust and the yawing inertia of the
aircraft.