412 CHAPTER 14 Fatigue
determinedasfollows.SubstitutingforthegustexceedanceE(ue)inEq.(14.21)fromEq.(14.17),we
obtain
Dg=−1
1000 l 10∫∞
uf1
2 N(Su,e)dr(ue)
duedueor
Dg=1
l 10dgperkm (14.22)inwhichl 10 isafunctionofheighthand
dg=−1
1000
∫∞
uf1
2 N(Su,e)dr(ue)
duedueSupposethattheaircraftisclimbingataspeedVwitharateofclimb(ROC).Thetimetakenforthe
aircrafttoclimbfromaheighthtoaheighth+δhisδh/ROC,duringwhichtimeittravelsadistance
Vδh/ROC.Hence,fromEq.(14.22),thefatiguedamageexperiencedbytheaircraftinclimbingthrough
aheightδhis
1
l 10dgV
ROC
δhThetotaldamageproducedduringaclimbfromsealeveltoanaltitudeHataconstantspeedVand
ROCis
Dg,climb=dgV
ROC
∫H
0dh
l 10(14.23)
Plotting1/l 10 againsthfromESDUdatasheetsforaircrafthavingcloudwarningradarandintegrating
gives
(^3000) ∫
0
dh
l 10
= 303
(^6000) ∫
3000
dh
l 10
= 14
(^9000) ∫
6000
dh
l 10
=3.4
Fromtheabove
∫ 9000
0 dh/l^10 =320.4,fromwhichitcanbeseenthatapproximately95percentofthe
totaldamageintheclimboccursinthefirst3000m.
An additional factor influencing the amount of gust damage is forward speed. For example, the
changeinwingstressproducedbyagustmayberepresentedby
Su,e=k 1 ueVe (seeEq.(13.24)) (14.24)inwhichtheforwardspeedoftheaircraftisinequivalentairspeed.FromEq.(14.24),weseethatthe
gustvelocityufrequiredtoproducethefatiguelimitstressS∞is
uf=S∞/k 1 Ve (14.25)