Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
15.2 Unsymmetrical Bending 437

The moment resultants of the internal direct stress distribution have the same sense as the applied
momentsMxandMy.Therefore,


Mx=


A

σzydA, My=


A

σzxdA (15.17)

SubstitutingforσzfromEq.(15.16)in(15.17)anddefiningthesecondmomentsofareaofthesection
abouttheaxesCx,Cyas


Ixx=


A

y^2 dA, Iyy=


A

x^2 dA, Ixy=


A

xydA

gives


Mx=

Esinα
ρ

Ixy+

Ecosα
ρ

Ixx, My=

Esinα
ρ

Iyy+

Ecosα
ρ

Ixy

or,inmatrixform
{
Mx
My


}

=

E

ρ

[

Ixy Ixx
Iyy Ixy

]{

sinα
cosα

}

fromwhich


E
ρ

{

sinα
cosα

}

=

[

Ixy Ixx
Iyy Ixy

]− 1 {

Mx
My

}

thatis,


E
ρ

{

sinα
cosα

}

=

1

IxxIyy−Ixy^2

[

−Ixy Ixx
Iyy −Ixy

]{

Mx
My

}

sothat,fromEq.(15.16),


σz=

(

MyIxx−MxIxy
IxxIyy−Ixy^2

)

x+

(

MxIyy−MyIxy
IxxIyy−Ixy^2

)

y (15.18)

Alternatively,Eq.(15.18)mayberearrangedintheform


σz=

Mx(Iyyy−Ixyx)
IxxIyy−Ixy^2

+

My(Ixxx−Ixyy)
IxxIyy−Ixy^2

(15.19)

FromEq.(15.19)itcanbeseenthatif,say,My=0,themomentMxproducesastresswhichvarieswith
bothxandy;similarlyforMyifMx=0.
Inthecasewherethebeamcrosssectionhaseither(orboth)CxorCyasanaxisofsymmetry,the
productsecondmomentofareaIxyiszeroandCxyareprincipalaxes.Equation(15.19)thenreducesto


σz=

Mx
Ixx

y+

My
Iyy

x (15.20)
Free download pdf