15.2 Unsymmetrical Bending 437The moment resultants of the internal direct stress distribution have the same sense as the applied
momentsMxandMy.Therefore,
Mx=∫
AσzydA, My=∫
AσzxdA (15.17)SubstitutingforσzfromEq.(15.16)in(15.17)anddefiningthesecondmomentsofareaofthesection
abouttheaxesCx,Cyas
Ixx=∫
Ay^2 dA, Iyy=∫
Ax^2 dA, Ixy=∫
AxydAgives
Mx=Esinα
ρIxy+Ecosα
ρIxx, My=Esinα
ρIyy+Ecosα
ρIxyor,inmatrixform
{
Mx
My
}
=
E
ρ[
Ixy Ixx
Iyy Ixy]{
sinα
cosα}
fromwhich
E
ρ{
sinα
cosα}
=
[
Ixy Ixx
Iyy Ixy]− 1 {
Mx
My}
thatis,
E
ρ{
sinα
cosα}
=
1
IxxIyy−Ixy^2[
−Ixy Ixx
Iyy −Ixy]{
Mx
My}
sothat,fromEq.(15.16),
σz=(
MyIxx−MxIxy
IxxIyy−Ixy^2)
x+(
MxIyy−MyIxy
IxxIyy−Ixy^2)
y (15.18)Alternatively,Eq.(15.18)mayberearrangedintheform
σz=Mx(Iyyy−Ixyx)
IxxIyy−Ixy^2+
My(Ixxx−Ixyy)
IxxIyy−Ixy^2(15.19)
FromEq.(15.19)itcanbeseenthatif,say,My=0,themomentMxproducesastresswhichvarieswith
bothxandy;similarlyforMyifMx=0.
Inthecasewherethebeamcrosssectionhaseither(orboth)CxorCyasanaxisofsymmetry,the
productsecondmomentofareaIxyiszeroandCxyareprincipalaxes.Equation(15.19)thenreducesto
σz=Mx
Ixxy+My
Iyyx (15.20)