Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
15.3 Deflections due to Bending 445

Thebendingmoment,M,atanysectionZisgivenby

M=

w
2

(L−z)^2 (i)

SubstitutingforMinthesecondofEq.(15.32)andrearranging,wehave


EIv′′=−

w
2

(L−z)^2 =−

w
2

(L^2 − 2 Lz+z^2 ) (ii)

IntegrationofEq.(ii)yields


EIv′=−

w
2

(

L^2 z−Lz^2 +

z^3
3

)

+C 1

Whenz=0atthebuilt-inend,v′=0,sothatC 1 =0and


EIv′=−

w
2

(

L^2 z−Lz^2 +

z^3
3

)

(iii)

IntegratingEq.(iii),wehave


EIv=−

w
2

(

L^2

z^2
2


Lz^3
3

+

z^4
12

)

+C 2

andsincev=0whenx=0,C 2 =0.Thedeflectioncurveofthebeam,therefore,hastheequation


v=−

w
24 EI

( 6 L^2 z^2 − 4 Lz^3 +z^4 ) (iv)

andthedeflectionatthefreeendwherex=Lis


vtip=−

wL^4
8 EI

(v)

whichisagainnegativeanddownward.


Example 15.7
Determine the deflection curve and the midspan deflection of the simply supported beam shown in
Fig.15.18(a);thebeamhasadoublysymmetricalcrosssection.


ThesupportreactionsareeachwL/2andthebendingmoment,M,atanysectionZ,adistancezfrom
theleft-handsupportis


M=−

wL
2

z+

wz^2
2

(i)
Free download pdf