Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

452 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams


FollowingthemethodofExample15.9,wedeterminethesupportreactionsandfindthebending
moment,M,atanysectionZinthebayfurthestfromtheoriginoftheaxes.Then


M=−RAz+w

L

4

[

z−

5 L

8

]

(i)

ExaminingEq.(i),weseethatthesingularityfunction[z− 5 L/8]doesnotbecomezerountilz≤ 5 L/8
althoughEq.(i)isonlyvalidforz≥ 3 L/4.Toobviatethisdifficulty,weextendthedistributedloadto
thesupportDwhilesimultaneouslyrestoringthestatusquobyapplyinganupwarddistributedloadof
thesameintensityandlengthastheadditionalload(Fig.15.22).
AtthesectionZ,adistancezfromA,thebendingmomentisnowgivenby


M=−RAz+

w
2

[

z−

L

2

] 2


w
2

[

z−

3 L

4

] 2

(ii)

Equation(ii)isnowvalidforallsectionsofthebeamifthesingularityfunctionsarediscardedasthey
becomezero.SubstitutingEq.(ii)intothesecondofEqs.(15.32),weobtain


EIv′′=

3

32

wLz−

w
2

[

z−

L

2

] 2

+

w
2

[

z−

3 L

4

] 2

(iii)

Integrating,Eq.(iii)gives


EIv′=

3

64

wLz^2 −

w
6

[

z−

L

2

] 3

+

w
6

[

z−

3 L

4

] 3

+C 1 (iv)

EIv=

wLz^3
64


w
24

[

z−

L

2

] 4

+

w
24

[

z−

3 L

4

] 4

+C 1 z+C 2 ,(v)

whereC 1 andC 2 arearbitraryconstants.Therequiredboundaryconditionsarev=0whenz=0and
z=L.FromthefirstoftheseweobtainC 2 =0,whilethesecondgives


0 =

wL^4
64


w
24

(

L

2

) 4

+

w
24

(

L

4

) 4

+C 1 L

Fig.15.22


Method of solution for a part span uniformly distributed load.

Free download pdf