458 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
whichgives
Ixx=
bd^3
12
(15.35)
Similarly,
Iyy=
db^3
12
(15.36)
Frequently,itisusefultoknowthesecondmomentofareaofarectangularsectionaboutanaxiswhich
coincideswithoneofitsedges.Thus,inFig.15.27andusingtheparallelaxestheorem
IN=
bd^3
12
+bd
(
−
d
2
) 2
=
bd^3
3
(15.37)
Example 15.13
DeterminethesecondmomentsofareaIxxandIyyoftheI-sectionshowninFig.15.28.
UsingEq.(15.35),
Ixx=
bd^3
12
−
(b−tw)d^3 w
12
Alternatively,usingtheparallelaxestheoreminconjunctionwithEq.(15.35)
Ixx= 2
[
btf^3
12
+btf
(
dw+tf
2
) 2 ]
+
twdw^3
12
Fig.15.28
Second moments of area of anI-section.