460 CHAPTER 15 Bending of Open and Closed, Thin-Walled Beams
whichgives
Ixx=
πd^4
64
(15.39)
Clearlyfromsymmetry
Iyy=
πd^4
64
(15.40)
Usingthetheoremofperpendicularaxes,thepolarsecondmomentofarea,Io,isgivenby
Io=Ixx+Iyy=
πd^4
32
(15.41)
15.4.4 Product Second Moment of Area
Theproductsecondmomentofarea,Ixy,ofabeamsectionwithrespecttoxandyaxesisdefinedby
Ixy=
∫
A
xydA (15.42)
Thus,eachelementofareainthecrosssectionismultipliedbytheproductofitscoordinates,andthe
integrationistakenoverthecompletearea.Althoughsecondmomentsofareaarealwayspositive,since
elements of area are multiplied by the square of one of their coordinates, it is possible forIxyto be
negativeifthesectionliespredominantlyinthesecondandfourthquadrantsoftheaxessystem.Such
asituationwouldariseinthecaseoftheZ-sectionofFig.15.30(a)wheretheproductsecondmoment
ofareaofeachflangeisclearlynegative.
Aspecialcaseariseswhenone(orboth)ofthecoordinateaxesisanaxisofsymmetrysothatfor
anyelementofarea,δA,havingtheproductofitscoordinatespositive,thereisanidenticalelementfor
whichtheproductofitscoordinatesisnegative(Fig.15.30(b)).Summation(i.e.,integration)overthe
Fig.15.30
Product second moment of area.