Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

38 CHAPTER 1 Basic Elasticity


TheprincipalstressesarenowobtainedbysubstitutionofεIandεIIinEqs.(1.52).Thus,

εI=

1

E

(σI−νσII) (1.65)

and


εII=

1

E

(σII−νσI) (1.66)

SolvingEqs.(1.65)and(1.66)gives


σI=

E

1 −ν^2

(εI+νεII) (1.67)

and


σII=

E

1 −ν^2

(εII+νεI) (1.68)

Atypicalrosettewouldhaveα=β= 45 ◦,inwhichcasetheprincipalstrainsaremostconveniently
foundusingthegeometryofMohr’scircleofstrain.Supposethatthearmaoftherosetteisinclinedat
someunknownangleθtothemaximumprincipalstrainasinFig.1.18.Then,Mohr’scircleofstrain
isasshowninFig.1.19;theshearstrainsγa,γb,andγcdonotfeatureintheanalysisandaretherefore
ignored.FromFig.1.19,wehave


OC=^12 (εa+εc)

CN=εa−OC=^12 (εa−εc)
QN=CM=εb−OC=εb−^12 (εa+εc)

Fig.1.19


Experimental values of principal strain using Mohr’s circle.

Free download pdf