38 CHAPTER 1 Basic Elasticity
TheprincipalstressesarenowobtainedbysubstitutionofεIandεIIinEqs.(1.52).Thus,
εI=
1
E
(σI−νσII) (1.65)
and
εII=
1
E
(σII−νσI) (1.66)
SolvingEqs.(1.65)and(1.66)gives
σI=
E
1 −ν^2
(εI+νεII) (1.67)
and
σII=
E
1 −ν^2
(εII+νεI) (1.68)
Atypicalrosettewouldhaveα=β= 45 ◦,inwhichcasetheprincipalstrainsaremostconveniently
foundusingthegeometryofMohr’scircleofstrain.Supposethatthearmaoftherosetteisinclinedat
someunknownangleθtothemaximumprincipalstrainasinFig.1.18.Then,Mohr’scircleofstrain
isasshowninFig.1.19;theshearstrainsγa,γb,andγcdonotfeatureintheanalysisandaretherefore
ignored.FromFig.1.19,wehave
OC=^12 (εa+εc)
CN=εa−OC=^12 (εa−εc)
QN=CM=εb−OC=εb−^12 (εa+εc)
Fig.1.19
Experimental values of principal strain using Mohr’s circle.