15.4 Calculation of Section Properties 463ahorizontalaxisthroughitscentroidisgivenby
Ixx= 2∫a/^20ty^2 ds= 2∫a/^20t(ssinβ)^2 dsfromwhich
Ixx=a^3 tsin^2 β
12Similarly,
Iyy=a^3 tcos^2 β
12Theproductsecondmomentofareais
Ixy= 2∫a/^20txyds= 2
∫a/^20t(scosβ)(ssinβ)dswhichgives
Ixy=a^3 tsin2β
24We note here that these expressions are approximate in that their derivation neglects powers oft^2
and upward by ignoring the second moments of area of the elementδsabout axes through its own
centroid.
Propertiesofthin-walledcurvedsectionsarefoundinasimilarmanner.Thus,Ixxforthesemicircular
sectionofFig.15.33is
Ixx=∫πr0ty^2 dsExpressingyandsintermsofasinglevariableθsimplifiestheintegration,so
Ixx=∫π0t(rcosθ)^2 rdθ