15.4 Calculation of Section Properties 463
ahorizontalaxisthroughitscentroidisgivenby
Ixx= 2
∫a/^2
0
ty^2 ds= 2
∫a/^2
0
t(ssinβ)^2 ds
fromwhich
Ixx=
a^3 tsin^2 β
12
Similarly,
Iyy=
a^3 tcos^2 β
12
Theproductsecondmomentofareais
Ixy= 2
∫a/^2
0
txyds
= 2
∫a/^2
0
t(scosβ)(ssinβ)ds
whichgives
Ixy=
a^3 tsin2β
24
We note here that these expressions are approximate in that their derivation neglects powers oft^2
and upward by ignoring the second moments of area of the elementδsabout axes through its own
centroid.
Propertiesofthin-walledcurvedsectionsarefoundinasimilarmanner.Thus,Ixxforthesemicircular
sectionofFig.15.33is
Ixx=
∫πr
0
ty^2 ds
Expressingyandsintermsofasinglevariableθsimplifiestheintegration,so
Ixx=
∫π
0
t(rcosθ)^2 rdθ