15.4 Calculation of Section Properties 465
FromEq.(15.19),
σz=
Mx(Iyyy−Ixyx)
IxxIyy−Ixy^2
(i)
Thesectionpropertiesarecalculatedasfollows
Ixx= 2
ht
2
(
h
2
) 2
+
th^3
12
=
h^3 t
3
Iyy= 2
t
3
(
h
2
) 3
=
h^3 t
12
Ixy=
ht
2
(
h
4
)(
h
2
)
+
ht
2
(
−
h
4
)(
−
h
2
)
=
h^3 t
8
SubstitutingthesevaluesinEq.(i)
σz=
Mx
h^3 t
(6.86y−10.30x) (ii)
Onthetopflangey=h/2,0≤x≤h/2,andthedistributionofdirectstressisgivenby
σz=
Mx
h^3 t
(3.43h−10.30x) (iii)
whichislinear.Hence,
σz,1=−
1.72Mx
h^3 t
(compressive)
σz,2=+
3.43Mx
h^3 t
(tensile)
In the web,h/2≤y≤−h/2 andx=0. Again the distribution is of linear form and is given by the
equation
σz=
Mx
h^3 t
6.86y
fromwhich
σz,2=+
3.43Mx
h^3 t
(tensile)
and
σz,3=−
3.43Mx
h^3 t
(compressive)