15.4 Calculation of Section Properties 465FromEq.(15.19),
σz=Mx(Iyyy−Ixyx)
IxxIyy−Ixy^2(i)Thesectionpropertiesarecalculatedasfollows
Ixx= 2ht
2(
h
2) 2
+
th^3
12=
h^3 t
3Iyy= 2t
3(
h
2) 3
=
h^3 t
12Ixy=ht
2(
h
4)(
h
2)
+
ht
2(
−
h
4)(
−
h
2)
=
h^3 t
8SubstitutingthesevaluesinEq.(i)
σz=Mx
h^3 t(6.86y−10.30x) (ii)Onthetopflangey=h/2,0≤x≤h/2,andthedistributionofdirectstressisgivenby
σz=Mx
h^3 t(3.43h−10.30x) (iii)whichislinear.Hence,
σz,1=−1.72Mx
h^3 t(compressive)σz,2=+3.43Mx
h^3 t(tensile)In the web,h/2≤y≤−h/2 andx=0. Again the distribution is of linear form and is given by the
equation
σz=Mx
h^3 t6.86yfromwhich
σz,2=+3.43Mx
h^3 t(tensile)and
σz,3=−3.43Mx
h^3 t(compressive)