476 CHAPTER 15 Bending of Open and Closed, Thin-walled Beams
Ans. v=−
1
EI
(
125
6
z^3 −50[z−1]^2 +
50
12
[z−2]^4 −
50
12
[z−4]^4 −
525
6
[z−4]^3 +237.5z
)
Fig. P.15.12
P.15.13Auniformthin-walledbeamABDofopencrosssection(Fig.P.15.13)issimplysupportedatpointsBand
Dwithitswebvertical.ItcarriesadownwardverticalforceWattheendAintheplaneoftheweb.
Deriveexpressionsfortheverticalandhorizontalcomponentsofthedeflectionofthebeammidwaybetween
thesupportsBandD.ThewallthicknesstandYoung’smodulusEareconstantthroughout.
Ans. u=0.186Wl^3 /Ea^3 t,v=0.177Wl^3 /Ea^3 t.
Fig. P.15.13
P.15.14AuniformcantileverofarbitrarycrosssectionandlengthlhassectionpropertiesIxx,Iyy,andIxywithrespect
tothecentroidalaxesshowninFig.P.15.14.Itisloadedinthevertical(yz)planewithauniformlydistributedload
of intensityw/unit length. The tip of the beam is hinged to a horizontal link which constrains it to move in the
verticaldirectiononly(providedthattheactualdeflectionsaresmall).Assumingthatthelinkisrigidandthatthere
arenotwistingeffects,calculate:
(a) theforceinthelink;
(b) thedeflectionofthetipofthebeam.