Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

480 CHAPTER 16 Shear of Beams


Fig.16.1


(a) General stress system on element of a closed or open section beam; (b) direct stress and shear flow system
on the element.


inclosedsectionbeams,byinternalpressure.Althoughwehavespecifiedthattmayvarywiths,this
variationissmallformostthin-walledstructuressothatwemayreasonablymaketheapproximation
thattisconstantoverthelengthδs.Also,fromEq.(1.4),wededucethatτzs=τsz=τ,say.However,
weshallfinditconvenienttoworkintermsofshearflowq—thatis,shearforceperunitlengthrather
thanintermsofshearstress.Hence,inFig.16.1(b),


q=τt (16.1)

andisregardedasbeingpositiveinthedirectionofincreasings.
Forequilibriumoftheelementinthezdirectionandneglectingbodyforces(seeSection1.2)
(
σz+


∂σz
∂z

δz

)

tδs−σztδs+

(

q+

∂q
∂s

δs

)

δz−qδz= 0

whichreducesto


∂q
∂s

+t

∂σz
∂z

= 0 (16.2)

Similarly,forequilibriuminthesdirection


∂q
∂z

+t

∂σs
∂s

= 0 (16.3)

Thedirectstressesσzandσsproducedirectstrainsεzandεs,whiletheshearstressτinducesashear
strainγ(=γzs=γsz).Weshallnowproceedtoexpressthesestrainsintermsofthethreecomponentsof
thedisplacementofapointinthesectionwall(seeFig.16.2).Ofthesecomponents,vtisatangential
displacementinthexyplaneandistakentobepositiveinthedirectionofincreasings;vnisanormal
displacementinthexyplaneandispositiveoutward;andwisanaxialdisplacementwhichhasbeen
definedpreviouslyinSection15.2.1.Immediately,fromthethirdofEqs.(1.18),wehave


εz=

∂w
∂z

(16.4)
Free download pdf