Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
16.3 Shear of Closed Section Beams 495

ofsymmetry,thenIxy=0,andsinceSx=0,Eq.(16.15)simplifiesto


qs=−

Sy
Ixx

∫s

0

tyds+qs,0 (i)

inwhich


Ixx= 2



∫^10 a

0

t

(

8

10

s 1

) 2

ds 1 +

∫^17 a

0

t

(

8

17

s 2

) 2

ds 2



EvaluatingthisexpressiongivesIxx= 1152 a^3 t.
ThebasicshearflowdistributionqbisobtainedfromthefirstterminEq.(i).Then,forthewall41


qb,41=

−Sy
1152 a^3 t

∫s^1

0

t

(

8

10

s 1

)

ds 1 =

−Sy
1152 a^3

(

2

5

s^21

)

(i)

Inthewall12,


qb,12=

−Sy
1152 a^3



∫s^2

0

( 17 a−s 2 )

8

17

ds 2 + 40 a^2


⎦ (ii)

whichgives


qb,12=

−Sy
1152 a^3

(


4

17

s^22 + 8 as 2 + 40 a^2

)

(iii)

Theqbdistributionsinthewalls23and34followfromsymmetry.Hence,fromEq.(16.28),


qs,0=

2 Sy
54 a× 1152 a^3



∫^10 a

0

2

5

s^21 ds 1 +

∫^17 a

0

(


4

17

s^22 + 8 as 2 + 40 a^2

)

ds 2



giving


qs,0=

Sy
1152 a^3

(

58.7a^2

)

(iv)

Takingmomentsaboutthepoint2,wehave


Sy(ξS+ 9 a)= 2

∫^10 a

0

q 4117 asinθds 1

or


Sy(ξS+ 9 a)=

Sy 34 asinθ
1152 a^3

∫^10 a

0

(


2

5

s^21 +58.7a^2

)

ds 1 (v)
Free download pdf