16.3 Shear of Closed Section Beams 495ofsymmetry,thenIxy=0,andsinceSx=0,Eq.(16.15)simplifiesto
qs=−Sy
Ixx∫s0tyds+qs,0 (i)inwhich
Ixx= 2⎡
⎣
∫^10 a0t(
8
10
s 1) 2
ds 1 +∫^17 a0t(
8
17
s 2) 2
ds 2⎤
⎦
EvaluatingthisexpressiongivesIxx= 1152 a^3 t.
ThebasicshearflowdistributionqbisobtainedfromthefirstterminEq.(i).Then,forthewall41
qb,41=−Sy
1152 a^3 t∫s^10t(
8
10
s 1)
ds 1 =−Sy
1152 a^3(
2
5
s^21)
(i)Inthewall12,
qb,12=−Sy
1152 a^3⎡
⎣
∫s^20( 17 a−s 2 )8
17
ds 2 + 40 a^2⎤
⎦ (ii)whichgives
qb,12=−Sy
1152 a^3(
−
4
17
s^22 + 8 as 2 + 40 a^2)
(iii)Theqbdistributionsinthewalls23and34followfromsymmetry.Hence,fromEq.(16.28),
qs,0=2 Sy
54 a× 1152 a^3⎡
⎣
∫^10 a02
5
s^21 ds 1 +∫^17 a0(
−
4
17
s^22 + 8 as 2 + 40 a^2)
ds 2⎤
⎦
giving
qs,0=Sy
1152 a^3(
58.7a^2)
(iv)Takingmomentsaboutthepoint2,wehave
Sy(ξS+ 9 a)= 2∫^10 a0q 4117 asinθds 1or
Sy(ξS+ 9 a)=Sy 34 asinθ
1152 a^3∫^10 a0(
−
2
5
s^21 +58.7a^2)
ds 1 (v)