16.3 Shear of Closed Section Beams 495
ofsymmetry,thenIxy=0,andsinceSx=0,Eq.(16.15)simplifiesto
qs=−
Sy
Ixx
∫s
0
tyds+qs,0 (i)
inwhich
Ixx= 2
⎡
⎣
∫^10 a
0
t
(
8
10
s 1
) 2
ds 1 +
∫^17 a
0
t
(
8
17
s 2
) 2
ds 2
⎤
⎦
EvaluatingthisexpressiongivesIxx= 1152 a^3 t.
ThebasicshearflowdistributionqbisobtainedfromthefirstterminEq.(i).Then,forthewall41
qb,41=
−Sy
1152 a^3 t
∫s^1
0
t
(
8
10
s 1
)
ds 1 =
−Sy
1152 a^3
(
2
5
s^21
)
(i)
Inthewall12,
qb,12=
−Sy
1152 a^3
⎡
⎣
∫s^2
0
( 17 a−s 2 )
8
17
ds 2 + 40 a^2
⎤
⎦ (ii)
whichgives
qb,12=
−Sy
1152 a^3
(
−
4
17
s^22 + 8 as 2 + 40 a^2
)
(iii)
Theqbdistributionsinthewalls23and34followfromsymmetry.Hence,fromEq.(16.28),
qs,0=
2 Sy
54 a× 1152 a^3
⎡
⎣
∫^10 a
0
2
5
s^21 ds 1 +
∫^17 a
0
(
−
4
17
s^22 + 8 as 2 + 40 a^2
)
ds 2
⎤
⎦
giving
qs,0=
Sy
1152 a^3
(
58.7a^2
)
(iv)
Takingmomentsaboutthepoint2,wehave
Sy(ξS+ 9 a)= 2
∫^10 a
0
q 4117 asinθds 1
or
Sy(ξS+ 9 a)=
Sy 34 asinθ
1152 a^3
∫^10 a
0
(
−
2
5
s^21 +58.7a^2
)
ds 1 (v)