Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

504 CHAPTER 17 Torsion of Beams


Fig.17.2


Determination of the shear flow distribution in a closed section beam subjected to torsion.


shearflowactingonanelementδsofthebeamwallispqδs.Hence,


T=


pqds

or,sinceqisconstantand



pds= 2 A(seeSection16.3)

T= 2 Aq (17.1)

NotethattheoriginOoftheaxesinFig.17.2maybepositionedinoroutsidethecrosssectionof
thebeam,sincethemomentoftheinternalshearflows(whoseresultantisapuretorque)isthesame
aboutanypointintheirplane.Foranoriginoutsidethecrosssection,theterm



pdswillinvolvethe
summationofpositiveandnegativeareas.Thesignofanareaisdeterminedbythesignofp,whichitself
isassociatedwiththesignconventionfortorqueasfollows.Ifthemovementofthefootofpalongthe
tangentatanypointinthepositivedirectionofsleadstoananticlockwiserotationofpabouttheorigin
ofaxes,pispositive.Thepositivedirectionofsisinthepositivedirectionofq,whichisanticlockwise
(correspondingtoapositivetorque).Thus,inFig.17.3ageneratorOA,rotatingaboutO,willinitially
sweepoutanegativearea,sincepAisnegative.AtB,however,pBispositivesothattheareasweptout
bythegeneratorhaschangedsign(atthepointwherethetangentpassesthroughOandp=0).Positive
andnegativeareascanceleachotheroutastheyoverlap,soasthegeneratormovescompletelyaround
thesection,startingandreturningtoA,say,theresultantareaisthatenclosedbytheprofileofthebeam.
ThetheoryofthetorsionofclosedsectionbeamsisknownastheBredt–Bathotheory,andEq.(17.1)
isoftenreferredtoastheBredt–Bathoformula.


17.1.1 Displacements Associated with the Bredt–Batho Shear Flow


TherelationshipbetweenqandshearstrainγestablishedinEq.(16.19),namely,


q=Gt

(

∂w
∂s

+

∂vt
∂z

)
Free download pdf