Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1
17.1 Torsion of Closed Section Beams 513

TheshearstrainsareobtainedfromEq.(17.1)andare


γa=

T

2 abGta

, γb=

T

2 abGtb

fromwhich


θ=

TL

4 a^2 b^2 G

(

a
ta

+

b
tb

)

Thetotalangleoftwistfromendtoendofthebeamis2θ,therefore,

2 θ
L

=

TL

4 a^2 b^2 G

(

2 a
ta

+

2 b
tb

)

or



dz

=

T

4 A^2 G


ds
t

asinEq.(17.4).
Substitutingforθineitheroftheexpressionsfortheaxialdisplacementofthecorner1givesthe
warpingw 1 at1.Thus,


w 1 =

a
2

b
L

TL

4 a^2 b^2 G

(

a
ta

+

b
tb

)


T

2 abGta

a
2

thatis,


w 1 =

T

8 abG

(

b
tb


a
ta

)

as before. It can be seen that the warping of the cross section is produced by a combination of the
displacements caused by twisting and the displacements due to the shear strains; these shear strains
correspondtotheshearstresseswhosevaluesarefixedbystatics.Theangleoftwistmustthereforebe
suchastoensurecompatibilityofdisplacementbetweenthewebsandcovers.


17.1.2 Condition for Zero Warping at a Section


Thegeometryofthecrosssectionofaclosedsectionbeamsubjectedtotorsionmaybesuchthatno
warpingofthecrosssectionoccurs.FromEq.(17.5),weseethatthisconditionariseswhen


δOs
δ

=

AOs
A

or


1
δ

∫s

0

ds
Gt

=

1

2 A

∫s

0

pRds (17.6)
Free download pdf