17.2 Torsion of Open Section Beams 515
Fig.17.10
(a) Shear lines in a thin-walled open section beam subjected to torsion; (b) approximation of elemental shear
lines to those in a thin rectangular strip.
Theshearstressdistributionandthemaximumshearstressaresometimesmoreconvenientlyexpressed
intermsoftheappliedtorque.Therefore,substitutingfordθ/dzinEqs.(17.9)and(17.10)gives
τzs=
2 n
J
T, τzs,max=±
tT
J
(17.13)
We assume in open beam torsion analysis that the cross section is maintained by the system of
closelyspaceddiaphragmsdescribedinSection16.1andthatthebeamisofuniformsection.Clearly,
inthisproblem,theshearstressesvaryacrossthethicknessofthebeamwall,whereasotherstresses,
suchasaxialconstraintstressesareassumedconstantacrossthethickness.
17.2.1 Warping of the Cross Section
WesawinSection3.4thatathinrectangularstripsufferswarpingacrossitsthicknesswhensubjectedto
torsion.Inthesameway,athin-walledopensectionbeamwillwarpacrossitsthickness.Thiswarping,
wt,maybededucedbycomparingFig.17.10(b)withFig.3.10andusingEq.(3.32),thus,
wt=ns
dθ
dz