518 CHAPTER 17 Torsion of Beams
Fig.17.12
Channel section of Example 17.3.
sothat
wO2=− 2 ×
1
2
×8.04s 1 ×
10 × 103
25000 ×316.7
=−0.01s 1 (i)
thatis,thewarpingdistributionislinearinO2and
w 2 =−0.01× 25 =−0.25mm
Inthewall21
AR=
1
2
×8.04× 25 −
1
2
× 25 s 2
inwhichtheareasweptoutbythegeneratorinthewall21providesanegativecontributiontothetotal
sweptareaAR.Thus,
w 21 =− 25 (8.04−s 2 )
10 × 103
25000 ×316.7
or
w 21 =−0.03(8.04−s 2 ) (ii)
Again,thewarpingdistributionislinearandvariesfrom−0.25mmat2to+0.54mmat1.Examination
of Eq. (ii) shows thatw 21 changes sign ats 2 =8.04mm. The remaining warping distribution follows
fromsymmetry,andthecompletedistributionisshowninFig.17.13.Inunsymmetricalsectionbeams,
the position of the point of zero warping is not known but may be found using the method for the