19.3 Effect of Idealization on the Analysis 543
Table 19.1
① ② ③ ④ ⑤
Boom y(mm) B(mm^2 ) Ixx=By^2 (mm^4 ) σz(N/mm^2 )
1 + 660 640 278 × 106 35.6
2 + 600 600 216 × 106 32.3
3 + 420 600 106 × 106 22.6
4 + 228 600 31 × 106 12.3
5 + 25 620 0.4× 106 1.3
6 − 204 640 27 × 106 −11.0
7 − 396 640 100 × 106 −21.4
8 − 502 850 214 × 106 −27.0
9 − 540 640 187 × 106 −29.0
Fig.19.6
(a) Elemental length of shear loaded open section beam with booms; (b) equilibrium of boom element.
stress-carryingthicknesstDoftheskin.Equation(16.14)maythereforeberewrittenas
qs=−
(
SxIxx−SyIxy
IxxIyy−I^2 xy
)∫s
0
tDxds−
(
SyIyy−SxIxy
IxxIyy−Ixy^2
)∫s
0
tDyds (19.3)
inwhichtD=tiftheskinisfullyeffectiveincarryingdirectstressortD=0iftheskinisassumedto
carryonlyshearstresses.AgainthesectionpropertiesinEq.(19.3)refertothedirectstress-carrying
areaofthesection,sincetheyarethosewhichfeatureinEqs.(15.18)and(15.19).
Equation(19.3)makesnoprovisionfortheeffectsofbooms,whichcausediscontinuitiesintheskin
andthereforeinterrupttheshearflow.Considertheequilibriumoftherthboomintheelementallength
of beam shown in Fig. 19.6(a) which carries shear loadsSxandSyacting through its shear center S.