19.3 Effect of Idealization on the Analysis 551
Fig.19.12
Shear flow distribution N/mm in walls of the beam section of Example 19.4.
Inanywall,thefinalshearflowisgivenbyqs=qb+qs,0sothat
q 21 =−18.1+5.4=−12.7N/mm=q 87
q 23 =−5.4N/mm=q 67
q 34 =−34.3N/mm=q 56
q 45 =−37.9N/mm
and
q 81 =17.0N/mm
givingtheshearflowdistributionshowninFig.19.12.
19.3.4 Alternative Method for the Calculation of Shear Flow Distribution
Equation(19.4)mayberewrittenintheform
q 2 −q 1 =
∂Pr
∂z
(19.12)
inwhichPristhedirectloadintherthboom.Thisformoftheequationsuggestsanalternativeapproach
tothedeterminationoftheeffectofboomsonthecalculationofshearflowdistributionsinopenand
closedsectionbeams.
Letussupposethattheboomloadvarieslinearlywithz.Thiswillbethecaseforalengthofbeam
overwhichtheshearforceisconstant.Equation(19.12)thenbecomes
q 2 −q 1 =− Pr (19.13)
inwhich Pristhechangeinboomloadoverunitlengthoftherthboom. Prmaybecalculatedbyfirst
determiningthechangeinbendingmomentbetweentwosectionsofabeamaunitdistanceapartand
thencalculatingthecorrespondingchangeinboomstressusingeitherofEq.(15.18)orof Eq.(15.19);
thechangeinboomloadfollowsbymultiplyingthechangeinboomstressbytheboomareaBr.Note
thatthesectionpropertiescontainedinEqs.(15.18)and(15.19)refertothedirectstress-carryingarea
of the beam section. In cases where the shear force is not constant over the unit length of beam, the
methodisapproximate.