Introduction to Aircraft Structural Analysis (Elsevier Aerospace Engineering)

(nextflipdebug5) #1

48 CHAPTER 2 Two-Dimensional Problems in Elasticity


TheEnglishmathematicianAiryproposedastressfunctionφdefinedbytheequations

σx=

∂^2 φ
∂y^2

σy=

∂^2 φ
∂x^2

τxy=−

∂^2 φ
∂x∂y

(2.8)

Clearly,substitutionofEqs.(2.8)intoEqs.(2.6)verifiesthattheequationsofequilibriumaresatisfied
by this particular stress–stress function relationship. Further substitution into Eq. (2.7) restricts the
possibleformsofthestressfunctiontothosesatisfyingthebiharmonicequation


∂^4 φ
∂x^4

+ 2

∂^4 φ
∂x^2 ∂y^2

+

∂^4 φ
∂y^4

= 0 (2.9)

The final form of the stress function is then determined by the boundary conditions relating to the
actualproblem.Therefore,atwo-dimensionalprobleminelasticitywithzerobodyforcesreducestothe
determinationofafunctionφofxandy,whichsatisfiesEq.(2.9)atallpointsinthebodyandEqs.(1.7)
reducedtotwodimensionsatallpointsontheboundaryofthebody.


2.3 InverseandSemi-InverseMethods................................................................


The task of finding a stress function satisfying the preceding conditions is extremely difficult in the
majorityofelasticityproblems,althoughsomeimportantclassicalsolutionshavebeenobtainedinthis
way. An alternative approach, known as theinverse method, is to specify a form of the functionφ
satisfyingEq.(2.9),assumeanarbitraryboundary,andthentodeterminetheloadingconditionswhich
fittheassumedstressfunctionandchosenboundary.Obvioussolutionsariseinwhichφisexpressedas
apolynomial.TimoshenkoandGoodier[Ref.1]consideravarietyofpolynomialsforφanddetermine
the associated loading conditions for a variety of rectangular sheets. Some of these cases are quoted
here.


Example 2.1
Considerthestressfunction


φ=Ax^2 +Bxy+Cy^2

whereA,B,andCareconstants.Equation(2.9)isidenticallysatisfied,sinceeachtermbecomeszero
onsubstitutingforφ.Thestressesfollowfrom


σx=

∂^2 φ
∂y^2

= 2 C

σy=

∂^2 φ
∂x^2

= 2 A

τxy=−

∂^2 φ
∂x∂y

=−B

Toproducethesestressesatanypointinarectangularsheet,werequireloadingconditionsproviding
theboundarystressesshowninFig.2.1.

Free download pdf