20.1 Tapered Wing Spar 563or
Sy=Sy,w+Pz,1δy 1
δz+Pz,2δy 2
δz(20.4)
sothat
Sy,w=Sy−Pz,1δy 1
δz−Pz,2δy 2
δz(20.5)
Againwenotethatδy 2 inEqs.(20.4)and(20.5)isnegative.Equation(20.5)maybeusedtodetermine
theshearflowdistributionintheweb.Foracompletelyidealizedbeam,thewebshearflowisconstant
through the depth and is given bySy,w/h. For a beam in which the web is fully effective in resisting
directstresses,thewebshearflowdistributionisfoundusingEq.(19.6),inwhichSyisreplacedbySy,w
andwhich,forthebeamofFig.20.1,wouldsimplifyto
qs=−Sy,w
Ixx⎛
⎝
∫s0tDyds+B 1 y 1⎞
⎠ (20.6)
or
qs=−Sy,w
Ixx⎛
⎝
∫s0tDyds+B 2 y 2⎞
⎠ (20.7)
Example 20.1
DeterminetheshearflowdistributioninthewebofthetaperedbeamshowninFig.20.2,atasection
midwayalongitslength.Thewebofthebeamhasathicknessof2mmandisfullyeffectiveinresisting
Fig.20.2
Tapered beam of this example.