20.2 Open and Closed Section Beams 567TheaxialloadPristhengivenby
Pr=(P^2 x,r+Py^2 ,r+P^2 z,r)^1 /^2 (20.11)or
Pr=Pz,r(δx^2 r+δy^2 r+δz^2 )^1 /^2
δz(20.12)
TheappliedshearloadsSxandSyarereactedbytheresultantsoftheshearflowsintheskinpanelsand
webs,togetherwiththecomponentsPx,randPy,roftheaxialloadsinthebooms.Therefore,ifSx,wand
Sy,waretheresultantsoftheskinandwebshearflowsandthereisatotalofmboomsinthesection,
Sx=Sx,w+∑mr= 1Px,r Sy=Sy,w+∑mr= 1Py,r (20.13)SubstitutinginEq.(20.13)forPx,randPy,rfromEqs.(20.10)and(20.9),wehave
Sx=Sx,w+∑mr= 1Pz,rδxr
δzSy=Sy,w+∑mr= 1Pz,rδyr
δz(20.14)
Hence,
Sx,w=Sx−∑mr= 1Pz,rδxr
δzSy,w=Sy−∑mr= 1Pz,rδyr
δz(20.15)
The shear flow distribution in an open section beam is now obtained using Eq. (19.6) in whichSxis
replaced bySx,wandSybySy,wfrom Eq. (20.15). Similarly for a closed section beam,SxandSyin
Eq.(19.11)arereplacedbySx,wandSy,w.Inthelattercase,themomentequation(Eq.(16.17))requires
modificationduetothepresenceoftheboomloadcomponentsPx,randPy,r.Thus,fromFig.20.5,we
Fig.20.5
Modification of moment equation in shear of closed section beams due to boom load.