570 CHAPTER 20 Wing Spars and Box Beams
The shear flow distribution in the walls of the beam is now found using the method described in
Section19.3.Since,forthisbeam,Ixy=0andSx=Sx,w=0,Eq.(19.11)reducesto
qs=
−Sy,w
Ixx
∑n
r= 1
Bryr+qs,0 (iv)
Wenow“cut”oneofthewalls,say16.Theresulting“opensection”shearflowisgivenby
qb=−
66.6× 103
5.4× 108
∑n
r= 1
Bryr
or
qb=−1.23× 10 −^4
∑n
r= 1
Bryr (v)
Thus,
qb,16= 0
qb,12= 0 −1.23× 10 −^4 × 900 × 300 =−33.2N/mm
qb,23=−33.2−1.23× 10 −^4 × 1200 × 300 =−77.5N/mm
qb,34=−77.5−1.23× 10 −^4 × 900 × 300 =−110.7N/mm
qb,45=−77.5N/mm(fromsymmetry)
qb,56=−33.2N/mm(fromsymmetry)
giving the distribution shown in Fig. 20.7. Taking moments about the center of symmetry, we have,
fromEq.(20.16),
− 100 × 103 × 600 = 2 ×33.2× 600 × 300 + 2 ×77.5× 600 × 300
+110.7× 600 × 600 + 2 × 1200 × 600 qs,0
fromwhichqs,0=−97.0N/mm(i.e.,clockwise).Thecompleteshearflowdistributionisfoundbyadding
thevalueofqs,0totheqbshearflowdistributionofFig.20.7andisshowninFig.20.8.
Fig.20.7
“Open section” shear flow (N/mm) distribution in beam section of Example 20.2.