22.4 Shear 595
determinatestructure.Thesystemofsimultaneousequationsfromwhichthefinalshearflowsarefound
willthenbe“wellconditioned”andwillproducereliableresults.Thesolutionofan“ill-conditioned”
systemofequationswouldprobablyinvolvethesubtractionoflargenumbersofasimilarsizewhich
wouldthereforeneedtobeexpressedtoalargenumberofsignificantfiguresforreasonableaccuracy.
Although this reasoning does not apply to a completely idealized wing section, since the calculated
values of shear flow are constant between the booms, it is again advantageous to “cut” either top or
bottomskinpanelsfor,inthespecialcaseofawingsectionhavingahorizontalaxisofsymmetry,a
“cut” in, say, the top skin panels will result in the “open section” shear flows (qb)beingzerointhe
bottomskinpanels.Thisdecreasesthearithmeticallaborandsimplifiesthederivationofthemoment
equation,aswillbecomeobviousinExample22.4.
The“opensection”shearflowqbinthewingsectionofFig.22.8isgivenbyEq.(19.6),thatis,
qb=−
(
SxIxx−SyIxy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDxds+
∑n
r= 1
Brxr
⎞
⎠
−
(
SyIyy−SxIxy
IxxIyy−Ixy^2
)⎛
⎝
∫s
0
tDyds+
∑n
r= 1
Bryr
⎞
⎠
Weareleftwithanunknownvalueofshearflowateachofthe“cuts,”thatis,qs,0,I,qs,0,II,...,qs,0,N,
plustheunknownrateoftwistdθ/dz,which,fromtheassumptionofanundistortedcrosssection,isthe
sameforeachcell.Therefore,asinthetorsioncase,thereareN+1unknownsrequiringN+1equations
forasolution.
ConsidertheRthcellshowninFig.22.9.Thecompletedistributionofshearflowaroundthecellis
givenbythesummationofthe“opensection”shearflowqbandthevalueofshearflowatthe“cut,”
qs,0,R.Wemaythereforeregardqs,0,Rasaconstantshearflowactingaroundthecell.Therateoftwist
isagaingivenbyEq.(16.22);thus,
dθ
dz
=
1
2 ARG
∮
R
q
ds
t
=
1
2 ARG
∮
R
(qb+qs,0,R)
ds
t
Fig.22.9
Redundant shear flow in theRthcellofanN-cell wing section subjected to shear.