22.5 Shear Center 599
- ForcellIII,
dθ
dz
=
1
2 × 413000 GREF
[− 68 qs,0,II+qs,0,III( 840 + 68 + 106
(v)
+ 840 + 202 )+45.5× 202 −95.5× 68 −95.5×106]
The solely numerical terms in Eqs. (iii) through (v) represent
∮
Rqb(ds/t)for each cell. Care must be
takentoensurethatthecontributionofeachqbvaluetothistermisinterpretedcorrectly.Thepathofthe
integrationfollowsthepositivedirectionofqs,0ineachcell—inotherwords,counterclockwise.Thus,
thepositivecontributionofqb,83to
∮
Iqb(ds/t)becomesanegativecontributionto
∮
IIqb(ds/t)andsoon.
ThefourthequationrequiredforasolutionisobtainedfromEq.(22.12)bytakingmomentsabout
theintersectionofthexaxisandtheweb572.Thus,
0 =−69.0× 250 × 1270 −69.0× 150 × 1270 +45.5× 330 × 1020
(vi)
+ 2 × 265000 qs,0,I+ 2 × 213000 qs,0,II+ 2 × 413000 qs,0,III
SimultaneoussolutionofEqs.(iii)through(vi)gives
qs,0,I=5.5N/mm qs,0,II=10.2N/mm qs,0,III=16.5N/mm
Superimposing these shear flows on theqbdistribution of Fig. 22.11, we obtain the final shear flow
distribution.Thus,
q 34 =5.5N/mm q 23 =q 87 =10.2N/mm q 12 =q 56 =16.5N/mm
q 61 =62.0N/mm q 57 =79.0N/mm q 72 =89.2N/mm
q 48 =74.5N/mm q 83 =64.3N/mm
Finally,fromanyofEqs.(iii)through(v),
dθ
dz
=1.16× 10 −^6 rad/mm
22.5 ShearCenter..........................................................................................
The position of the shear center of a wing section is found in an identical manner to that described
in Section 16.3. Arbitrary shear loadsSxandSyare applied in turn through the shear center S, the
correspondingshearflowdistributionsaredetermined,andmomentsaretakenaboutsomeconvenient
point.Theshearflowdistributionsareobtainedasdescribedpreviouslyintheshearofmulticellwing
sectionsexceptthattheNequationsofthetype(22.10)aresufficientforasolution,sincetherateof
twistdθ/dziszeroforshearloadsappliedthroughtheshearcenter.