CHAPTER 3 Torsion of Solid Sections...............................................................
Theelasticitysolutionofthetorsionproblemforbarsofarbitrarybutuniformcrosssectionisaccom-
plishedbythesemi-inversemethod(Section2.3)inwhichassumptionsaremaderegardingeitherstress
ordisplacementcomponents.TheformermethodowesitsderivationtoPrandtl,thelattertoSt.Venant.
Bothmethodsarepresentedinthischaptertogetherwiththeusefulmembraneanalogyintroducedby
Prandtl.
3.1 PrandtlStressFunctionSolution...................................................................
ConsiderthestraightbarofuniformcrosssectionshowninFig.3.1.Itissubjectedtoequalbutopposite
torquesTateachend,bothofwhichareassumedtobefreefromrestraintsothatwarpingdisplacements
w—thatis,displacementsofcrosssectionsnormaltoandoutoftheiroriginalplanes—areunrestrained.
Further,wemakethereasonableassumptionsthatsincenodirectloadsareappliedtothebar
σx=σy=σz= 0andthatthetorqueisresistedsolelybyshearstressesintheplaneofthecrosssection,giving
τxy= 0Toverifytheseassumptions,wemustshowthattheremainingstressessatisfytheconditionsofequilib-
riumandcompatibilityatallpointsthroughoutthebarand,inaddition,fulfilltheequilibriumboundary
conditionsatallpointsonthesurfaceofthebar.
Ifweignorebodyforces,theequationsofequilibrium(1.5)reduceasaresultofourassumptions,to
∂τxz
∂z
= 0
∂τyz
∂z= 0
∂τzx
∂x+
∂τyz
∂y= 0 (3.1)
ThefirsttwoequationsofEqs.(3.1)showthattheshearstressesτxzandτyzarefunctionsofxandy
only.Therefore,theyareconstantatallpointsalongthelengthofthebar,whichhavethesamexand
ycoordinates.Atthisstage,weturntothestressfunctiontosimplifytheprocessofsolution.Prandtl
introducedastressfunctionφdefinedby
∂φ
∂x=−τzy∂φ
∂y=τzx (3.2)Copyright©2010,T.H.G.Megson. PublishedbyElsevierLtd. Allrightsreserved.
DOI:10.1016/B978-1-85617-932-4.00003-8 65