3.3 The Membrane Analogy 77
simplifiesto
(
∂ψ
∂y
+x
)
m+
(
∂ψ
∂x
−y
)
l= 0 (3.21)
Itmaybeshown,butnotaseasilyasinthestressfunctionsolution,thattheshearstressesdefinedin
termsofthewarpingfunctioninEqs.(3.19)producezeroresultantshearforceovereachendofthebar
[Ref.1].ThetorqueisfoundinasimilarmannertothatinSection3.1where,byreferencetoFig.3.3,
wehave
T=
∫∫
(τzyx−τzxy)dxdy
or
T=G
dθ
dz
∫∫[(
∂ψ
∂y
+x
)
x−
(
∂ψ
∂x
−y
)
y
]
dxdy (3.22)
BycomparisonwithEq.(3.12)thetorsionconstantJisnow,intermsofψ
J=
∫∫[(
∂ψ
∂y
+x
)
x−
(
∂ψ
∂x
−y
)
y
]
dxdy (3.23)
Thewarpingfunctionsolutiontothetorsionproblemreducestothedeterminationofthewarping
functionψwhichsatisfiesEqs.(3.20)and(3.21).Thetorsionconstantandtherateoftwistfollowfrom
Eqs. (3.23) and (3.22); the stresses and strains from Eqs. (3.19) and (3.18); and, finally, the warping
distributionfromEq.(3.17).
3.3 TheMembraneAnalogy............................................................................
Prandtlsuggestedanextremelyusefulanalogyrelatingthetorsionofanarbitrarilyshapedbartothe
deflectedshapeofamembrane.Thelatterisathinsheetofmaterialwhichreliesforitsresistanceto
transverseloadsoninternalin-planeormembraneforces.
Supposethatamembranehasthesameexternalshapeasthecrosssectionofatorsionbar(Fig.3.7(a)).
Itsupportsatransverseuniformpressureqandisrestrainedalongitsedgesbyauniformtensileforce
N/unit length as shown in Fig. 3.7(a) and (b). It is assumed that the transverse displacements of the
membranearesmallsothatNremainsunchangedasthemembranedeflects.Considertheequilibrium
ofanelementδxδofthemembrane.ReferringtoFig.3.8andsummingforcesinthezdirection,we
have
−Nδy
∂w
∂x
−Nδy
(
−
∂w
∂x
−
∂^2 w
∂x^2
δx
)
−Nδx
∂w
∂y
−Nδx
(
−
∂w
∂y
−
∂^2 w
∂y^2
δx
)
+qδxδy= 0
or
∂^2 w
∂x^2
+
∂^2 w
∂y^2
=∇^2 w=−
q
N