3.3 The Membrane Analogy 77simplifiesto
(
∂ψ
∂y
+x)
m+(
∂ψ
∂x−y)
l= 0 (3.21)Itmaybeshown,butnotaseasilyasinthestressfunctionsolution,thattheshearstressesdefinedin
termsofthewarpingfunctioninEqs.(3.19)producezeroresultantshearforceovereachendofthebar
[Ref.1].ThetorqueisfoundinasimilarmannertothatinSection3.1where,byreferencetoFig.3.3,
wehave
T=∫∫
(τzyx−τzxy)dxdyor
T=Gdθ
dz∫∫[(
∂ψ
∂y+x)
x−(
∂ψ
∂x−y)
y]
dxdy (3.22)BycomparisonwithEq.(3.12)thetorsionconstantJisnow,intermsofψ
J=
∫∫[(
∂ψ
∂y+x)
x−(
∂ψ
∂x−y)
y]
dxdy (3.23)Thewarpingfunctionsolutiontothetorsionproblemreducestothedeterminationofthewarping
functionψwhichsatisfiesEqs.(3.20)and(3.21).Thetorsionconstantandtherateoftwistfollowfrom
Eqs. (3.23) and (3.22); the stresses and strains from Eqs. (3.19) and (3.18); and, finally, the warping
distributionfromEq.(3.17).
3.3 TheMembraneAnalogy............................................................................
Prandtlsuggestedanextremelyusefulanalogyrelatingthetorsionofanarbitrarilyshapedbartothe
deflectedshapeofamembrane.Thelatterisathinsheetofmaterialwhichreliesforitsresistanceto
transverseloadsoninternalin-planeormembraneforces.
Supposethatamembranehasthesameexternalshapeasthecrosssectionofatorsionbar(Fig.3.7(a)).
Itsupportsatransverseuniformpressureqandisrestrainedalongitsedgesbyauniformtensileforce
N/unit length as shown in Fig. 3.7(a) and (b). It is assumed that the transverse displacements of the
membranearesmallsothatNremainsunchangedasthemembranedeflects.Considertheequilibrium
ofanelementδxδofthemembrane.ReferringtoFig.3.8andsummingforcesinthezdirection,we
have
−Nδy∂w
∂x−Nδy(
−
∂w
∂x−
∂^2 w
∂x^2δx)
−Nδx∂w
∂y−Nδx(
−
∂w
∂y−
∂^2 w
∂y^2δx)
+qδxδy= 0or
∂^2 w
∂x^2+
∂^2 w
∂y^2=∇^2 w=−q
N