3.4 Torsion of a Narrow Rectangular Strip 79
and
q
N
=−F= 2 G
dθ
dz
Theanalogynowbeingestablished,wemaymakeseveralusefuldeductionsrelatingthedeflected
formofthemembranetothestateofstressinthebar.
Contourlinesorlinesofconstantwcorrespondtolinesofconstantφorlinesofshearstressinthe
bar.Theresultantshearstressatanypointistangentialtothemembranecontourlineandequalinvalue
tothenegativeofthemembraneslope,∂w/∂n,atthatpoint,thedirectionnbeingnormaltothecontour
line(seeEq.(3.16)).Thevolumebetweenthemembraneandthexyplaneis
Vol=
∫∫
wdxdy
andweseethatbycomparisonwithEq.(3.8)
T=2Vol
The analogy therefore provides an extremely useful method of analyzing torsion bars possessing
irregular cross sections for which stress function forms are not known. Hetényi [Ref. 2] describes
experimentaltechniquesforthisapproach.Inadditiontothestrictlyexperimentaluseoftheanalogy,it
isalsohelpfulinthevisualappreciationofaparticulartorsionproblem.Thecontourlinesoftenindicate
aformforthestressfunction,enablingasolutiontobeobtainedbythemethodofSection3.1.Stress
concentrationsaremadeapparentbytheclosenessofcontourlines,wheretheslopeofthemembrane
islarge.Theseareinevidenceatsharpinternalcorners,cut-outs,discontinuities,andsoon.
3.4 TorsionofaNarrowRectangularStrip............................................................
InChapter17,weshallinvestigatethetorsionofthin-walledopensectionbeams,thedevelopmentof
thetheorybeingbasedontheanalysisofanarrowrectangularstripsubjectedtotorque.Wenowconve-
nientlyapplythemembraneanalogytothetorsionofsuchastripshowninFig.3.9.Thecorresponding
membrane surface has the same cross-sectional shape at all points along its length except for small
regionsnearitsendswhereitflattensout.Ifweignoretheseregionsandassumethattheshapeofthe
membraneisindependentofy,thenEq.(3.11)simplifiesto
d^2 φ
dx^2
=− 2 G
dθ
dz
Integratingtwice
φ=−G
dθ
dz
x^2 +Bx+C
Substitutingtheboundaryconditionsφ=0atx=±t/2,wehave
φ=−G
dθ
dz
[
x^2 −
(
t
2