671017.pdf

(vip2019) #1
0 20 40 60 80 100

8

9

10

11

12

13

14

15

Shear

stren gt

h

rat

io

at

fai

lure

Fabri

c

ani

sot

ropy

Fabric anisotropy

Bedding angle (Deg)
Shear stren gth ratio at failure


  1. 9

  2. 0

  3. 1

  4. 2

  5. 3

  6. 4

  7. 5

  8. 6

  9. 7

  10. 8


(a)

4

6

8

10

12


  1. 4

  2. 6

  3. 8

  4. 0

  5. 2

  6. 4

  7. 6

  8. 8

  9. 0


0 20 40 60 80 100

Shear

stren gt

h

rat

io

at

fai

lure

Fabri

c

ani

sot

ropy

Bedding angle (Deg)

Fabric anisotropy

Shear stren gth ratio at failure

(b)




  1. 5

  2. 0

  3. 5

  4. 0

  5. 5

  6. 0

  7. 5

  8. 0
    0. 5
    0. 6
    0. 7
    0. 8
    0. 9






0 20 40 60 80 100

Shear

st

ren gt

h

rat

io

at

fai

lure

Fabri

c ani

sot

ropy

Bedding angle (Deg)

Fabric anisotropy

Shear stren gth ratio at failure

(c)


  1. 8

  2. 0

  3. 2

  4. 4

  5. 6

  6. 8

  7. 0

    1. 00

    2. 05

    3. 10

    4. 15

    5. 20

    6. 25




0 20 40 60 80 100

Shear

st

ren gt

h

rat

io

at

fai

lure

Fabri

c ani

sot

ropy

Bedding angle (Deg)

Fabric anisotropy

Shear stren gth ratio at failure

(d)

Figure 1: Samples with휙휇=52∘and푟 1 /푟 2 = 1.1(a),휙휇=26∘and푟 1 /푟 2 = 1.1(b),휙휇=52∘and푟 1 /푟 2 = 1.4(c), and휙휇=26∘and푟 1 /푟 2 = 1.4
(d).


6. Fabric Evolution

The parameters훼and휃푓show the status of the fabric and
its evolution. These parameters have a great influence on
the behavior of the dilatancy equation. Shaverdi et al. [ 29 ]
proposed an equation which can predict the magnitude of훼
and휃푓in the presence of the noncoaxiality between stress and
fabric. This equation is obtained from the microlevel analysis.
To c a l c u l a t e t h e훼parameter, the magnitude of the shear to
normal stress ratio on the spatially mobilized plane (SMP)
must be determined. In the triaxial case, for example,휏/푝may
be obtained from the following equation [ 30 ]:




=√

휎 1

휎 3

−√

휎 3

휎 1

. (19)

The parameters훼and휃푓may be obtained from the fol-
lowing equations in the presence of noncoaxiality [ 29 ]:

훼=

(휏/푝)cos휙휇mob−sin휙휇mob

sin(2휃푓+휙휇mob)−((휏/푝)cos(2휃푓+휙휇mob))

,

(20)

휃̇푓=휃̇휎+(^1

2

)⋅푑휂⋅(휃휎−휃푓), (21)

where the dot over휃shows the variation. The most important
parameter in the above equation is the interparticle mobilized
Free download pdf