88 Fermi–Diracgasesfunctiong(ε)∝ε^1 /^2 andμfallsslightly.Usingthe results ofAppendixCitcan
be shown that for this caseμ(T)=μ( 0 )[ 1 −(π^2 / 12 )(kkkBT/μ)^2 ...]Since the variation is small, we shall in future not distinguish betweenμandμ(0),
unless confusion wouldarise. Note that the symbolεFfor the Fermienergy will
be usedinplace ofμin sections 8 .2 and8. 3.8 .1.3 The thermodynamicfunctionsIt remains to calculate thethermodynamicfunctions,U,CV,Pandso on.Weshall
do this explicitlyin the degenerate limit only, and shall sketchgraphs to indicate how
the functions connect to the classical MB limit. Numerical methods are needed to
compute theshape ofsuchgraphs.Internal energyU. The internal energy can be evaluated from the distribution
functionf(ε),simplyusingthedirect expressionU=∑
iniεiInthe present context thisbecomesU=
∫∞
0∫∫
εg(ε)))f(ε)dε (8.7)AtT=0,f(ε)isthesimple stepfunction, so that theintegralis readilyevaluatedas
U( 0 )=
∫μ0∫∫
εg(ε)dεSubstitutingg(ε)=Cε^1 /^2 for the fermion gas, this givesU( 0 )=
2
5
Cμ^5 /^2=
3
5
Nμ (8.8)The result (8.8)follows without the needto rememberCwhenitis recalledfrom the
previous section thatN=^23 Cμ^3 /^2 from the correspondingintegral(8.4). Thisvalue
ofU(0) represents a very large zero-point energy, an average of 0. 6 μper particle. It
isadirect expression ofthe exclusion principle, that the particles areforcedto occupy
highenergystates even atT=0. (Fermionsdisplaytower-blockmentality!)