190 Optimizing Optimization
thus,
()^1 ()1
0
r 1
P
P
p y
⎛
⎝
⎜⎜
⎜⎜
⎞
⎠
⎟⎟
⎟⎟ exp
(8.59)
So that
() 11 rry ypi∑ωωiexp()()() 12 1 ωexp
(8.60)
and
ryp ωωexp() ( 1211 ) ( )expy
(8.61)
Therefore ,
sv rpppt r pdf r drp
t
()( ) ()
2
∫∞
(8.62)
If
rtp<<,expωωy 12 11 exp then y t ( ) ( ) ( )
(8.63)
The above transforms to a region ℜ in ( y (^) 1, y 2 ) space. Hence,
sv r()p ( 11 t ωωexp( ) (y 12 ) ( ))expy^2 pdf y y dy dy(12 1 2, )
∫ℜ
(8.64)
or
sv r() ()( )p 1 t pdf y y dy dy^2 12 1 2,ec 1 xp,()( )y pdf y y dy dy 1 12 1 2
∫∫ℜℜ∫
c (^112) ∫ℜ y y pdf y y dy dy
2
(( )) ( )exp12 1 2,
(8.65)
where c 1 and c 2 are some constants. None of the above integrals can be com-
puted in closed form, although they can be calculated by numerical methods.
8.4 Conic results
Using our definition of value at risk as VaR p t σ (^) p μ (^) p with t 0, and noting
from Proposition 8.1 that σp^2 must lie on the minimum variance frontier so that
σ
μγ βμ α
αγ β
p
2 pp
2
2
2
()
()
(8.66)