Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

Computing optimal mean/downside risk frontiers: the role of ellipticity 199


Campbell , R. , Huisman , R. , & Koedijk , K. ( 2002 ). Optimal portfolio selection in a
value at risk framework. Journal of Banking and Finance , 25 , 1789 – 1804.
Embrecht , P. , McNeil , A. J. , & Straumann , D. ( 2002 ). Correlation and dependence in
risk management: Properties and pitfalls. In M. Dempster & H. K. Moffatt (Eds.) ,
Risk management: Value at risk and beyond. Cambridge University Press.
Ingersoll , J. E. ( 1987 ). Theory of financial decision making. Totowa : Rowman &
Littlefield.
Kaynar, B., Ilker Birbil, D., & Frenk, J. B. G. (2007). Application of a general risk
management model to portfolio optimization problems with elliptical distributed
returns for risk neutral and risk averse decision makers. Econometrics Institute
report. Department of Economics, Erasmus University Rotterdam.
Kring, S., Rachev, S. T., H ö chst ö tter, M., Fabozzi, F. J., & Bianchi, M. L. (2009). Multi-tail
generalized elliptical distributions for asset returns. Econometrics Journal , 1 – 20.
Sargent , T. J. ( 1979 ). Macroeconomic theory. New York : Academic Press.
Wang, J. (2000). Mean – variance – VaR based portfolio optimization. Mimeo, Valdosta
State University.

Free download pdf