Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

228 Optimizing Optimization


straightforward to see that as λ ranges from 0 to ∞ , we move down the fron-
tier from the maximum expected return portfolio to the global minimum variance
portfolio. This framework is widely used in finance, see Sharpe (1981) , Grinold
and Kahn (1999) , and Scherer (2002).
Our first-order condition is:




U
b

bi b i
()

() ( )
ω

μλω θ ωμλ θ


ΩΩˆ ˆ 0 or ˆ^1 ^1 ˆ

Using i ( ω  b )  0, we see that^1 λ()βθˆγ^0 , where β  i Ω 1 μ , γ  i Ω ^1 i
and we set a  μ Ω ^1 μ. Thus, ωμˆ ()
λ


β
 γ
bi^1 ΩΩ^11 and hence active
returns α can be computed as:


αμω

β
γ

λ

γβ
γ

  λ 





()ˆ ba

a

1

2

1 2



⎜⎜
⎜⎜



⎟⎟
⎟⎟⎟



⎜⎜
⎜⎜



⎟⎟
⎟⎟⎟
(10.1)

Other terms of interest can be calculated. For example, we have:


σˆ
λ

μ
β
γ

μ
β
γ

λ

2
2

(^11111)
1
 

⎛ΩΩΩΩΩii

⎜⎜
⎜⎜


⎟⎟
⎟⎟


⎜⎜
⎜⎜


⎟⎟
⎟⎟
22
22
2
1 2
a
a


β
γ
β
γ
λ
β
γ


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟
(10.2)
and we will focus on σˆ the tracking error or standard deviation of relative
returns. Finally,
EU
aa
()


1 
2
(^21)
2
2
λ
γβ
γ
λ
λ
γβ
γ


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜⎜
⎞⎞

⎟⎟
⎟⎟



⎜⎜
⎜⎜


⎟⎟
 ⎟⎟⎟
1 
2
2
λ
γβ
γ
a
(10.3)

Free download pdf