Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

234 Optimizing Optimization


The corresponding results for^ IR^ and^ TE are given by:


EIR
n
nh n

()
()




⎜⎜



⎟⎟
1 ⎟⎟

1
1

12






/

and


ETE
n
nh n

()
()




⎜⎜



⎟⎟
⎟⎟

1
1

1
1

12

λ 




/

We now examine portfolio optimization without a benchmark. Here, we maxi-
mize ω μ  λ /2 ω Ω ω subject to ω i  1. The associated Lagrangian is given by:


Wi  ωμ ω ω θωλ 2 Ω () 1
(10.11)

with




W
i
ω

μλωθΩ   0

implying


ωμθλ^1 ()ΩΩ^11 i

since i ω  1, we have immediately that


θμλ ^
()/iiiΩΩ^11

i.e.,


θβλγ()/

Consequently,


ˆ ˆ ˆ

ˆ
ˆ

ωμβλˆ
λ γ

1 ^11 
ΩΩ



⎜⎜
⎜⎜



⎟⎟
⎟⎟⎟



⎜⎜
⎜⎜



⎟⎟
⎟⎟

i
Free download pdf