242 Optimizing Optimization
with
∂ ∂ ∂ ∂ ∂ ∂
L
i
L
L
i
ω
ωθμθ
θ
μω π
θ
ω
Ω 12
1
2
0
0
10
Consequently,
ωμ
θ
θ
Ω^11
2
(,)i
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
where
μμμ
μ
θ
θ
π
ΩΩ
ΩΩ
11
11
1
2 1
i
iii
⎡
⎣
⎢
⎢
⎢
⎤
⎦
⎥
⎥
⎥
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
That is,
ωμˆ ˆ (ˆ,)ˆ
π
Ω^11
1
iQ
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
and therefore,
σωωπ
π
π
21
1
1
1
1
ˆ ˆˆ ()ˆ
ˆ ,
Ω Q
pQ p p
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
⎡
⎣
⎢
⎢
⎤
⎦
⎥
⎥
where
From our earlier results, pQ pW T NTpQ p
ˆ^1 |ˆ ( , )
1
μ∼ 1 ,^11 where
W 1 ( · ) is a Wishart of dimension 1. Here, Qi i
(,)μμˆˆΩ^1 (),,
and therefore,
pQ p ˆ^1 ∼χ()^2 TN 1 Ψ, where χm
2
is a chi-squared with m degree of freedom.
with
Ψ
(^11)
T
pQ p