Optimizing Optimization: The Next Generation of Optimization Applications and Theory (Quantitative Finance)

(Romina) #1

272 Optimizing Optimization


Appendix


Parameters of the Johnson density

Slifker and Shapiro (1980, pp. 243 – 246) report the following parameter esti-
mates for each of the four Johnson distributions using their method of quan-
tiles estimator. Interested readers should consult the original article for a full
derivation of these formulae.


Parameters estimates of the S U distribution

ηη γη








(^2) 
1
2
0,
2
1
z 1
m
p
n
p
n
p
m
p
cosh
() h


⎜⎜
⎜⎜


⎟⎟
⎟⎟








sin
mmn
p^2
12
 1


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢


⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
/
λ

 
21
22
2
1/2
p
mn
p
m
p
n
p
m
p
n
p


⎜⎜
⎜⎜


⎟⎟
⎟⎟⎟


⎜⎜
⎜⎜


⎟⎟
⎟⎟


⎜⎜
⎜⎜
⎞⎞

⎟⎟
⎟⎟
1/2 ()λ^0
ε




xx
p
n
p
m
p
m
p
n
p
zz
2
22


⎜⎜
⎜⎜


⎟⎟
⎟⎟


⎜⎜
⎜⎜


⎟⎟
⎟⎟


Parameters estimates of the S B distribution

η
 

z
p
m

p
n

1

1/2
1
2

cosh^11



⎜⎜



⎟⎟



⎜⎜



⎟⎟











⎜⎜
⎜⎜


⎠⎠

⎟⎟
⎟⎟
⎟⎟

()η 0

γη


 1

11 4
sinh

p
n

p
m

p
m

p
n



⎜⎜



⎟⎟



⎜⎜



⎟⎟



⎜⎜



⎟⎟





⎤⎤





⎜⎜
⎜⎜



⎟⎟
⎟⎟⎟



⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢



⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥

1/2

2
21
p
mn


Free download pdf